

Progress in Natural Science 19 (2009) 1201-1208

Progress in Natural Science

www.elsevier.com/locate/pnsc

Review

Progress in the participation of Ca²⁺-calmodulin in heat shock signal transduction

Rengang Zhou a,b,*, Bing Li c,d, Hongtao Liu a,c, Daye Sun c,d,*

^a Institute of Genetics and Physiology, Hebei Academy of Agricultural Sciences, Shijiazhuang 050051, China
^b Hebei Provincial Key Laboratory of Plant Genetic Engineering, Shijiazhuang 050051, China
^c Academy of Life Sciences, Hebei Normal University, Shijiazhuang 050016, China
^d Hebei Provincial Key Laboratory of Molecular and Cell Biology, Shijiazhuang 050016, China

Received 1 December 2008; received in revised form 10 December 2008; accepted 11 December 2008

Abstract

A novel heat shock (HS) signal transduction pathway in plants for the participation of Ca²⁺-calmodulin (CaM) in HS signal transduction was identified. HS induces a rapid increase in intracellular free calcium ion levels ([Ca²⁺]_i), and the involvement of phospholipase C-inositol 1,4,5-trisphosphate is one of the factors leading to elevation in [Ca²⁺]_i induced by HS. HS also increases the expression of the CaM gene and the accumulation of the CaM protein. The CaM isoform, AtCaM3, in *Arabidopsis* is a key member in the HS signal transduction pathway. AtCaM3 regulates the activity of CaM-binding protein kinase (AtCBK3) or protein phosphatase (AtPP7), promoting the activation of the HS transcription factor, AtHSFA1a, by phosphorylation/dephosphorylation and the expression of heat shock protein genes, then improving heat tolerance in plants.

© 2009 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in China Press. All rights reserved.

Keywords: Ca²⁺; Calmodulin; Protein kinase; Heat shock transcription factor; Signal transduction

1. Introduction

Global warming due to human activities has become a common understanding of meteorologists in the world. The Intergovernmental Panel on Climate Change (IPCC) sent out a strong warning on climate crisis due to global warming in the IPCC Fourth Assessment Report. This report pointed out that warming of the climate system is unequivocal; the increase in the global average air temperature will reach 1.1–6.4 °C during the 21st century. It is predicted that the production of the main cereal crops will decrease by 5–10% during the next 20 years due to global warming. The study of thermotolerance in plants becomes

important and imperative in this situation. The study of critical genes controlling thermotolerance in plants is the basis for understanding the mechanism of adaptation to elevated temperature. How cells perceive and transduce outside stimuli, the changes in physiological reaction and gene expression caused by the stimuli, and the molecular pathway of modulation and transduction are main interest points in cell signal transduction. The study of the heat shock signal transduction pathway is one of the ways by which we are able to find genes related to thermotolerance in plants. The mechanism by which plants withstand environmental stresses remains largely unknown. The investigation in this field is currently at the preliminary stage.

Plants are both sessile and poikilothermic; they can neither move to avoid environmental stresses nor adjust their core temperature to withstand them. As a result, they have to evolve an elaborate stress response network and a wide array of mechanisms for adapting to stressful

 $^{^{\}ast}$ Corresponding authors. Tel.: +86 311 87652127 (R. Zhou), +86 311 86269397 (D. Sun).

E-mail addresses: rengangzhou@yahoo.com.cn (R. Zhou), dysun@heinfo.net (D. Sun).

environments. This may be the crux of survival for plants under changing environments. One of the best characterized responses to environmental stresses is the induction of heat shock proteins (Hsps). The heat shock (HS) response has been observed in every organism studied to date. Hsps function as molecular chaperones, which are essential for cellular processes including protein folding, subcellular localization, assembly and signal transductions. Under stress conditions, the synthesis of molecular chaperones allows cellular proteins to avoid and/or recover from stress-induced protein aggregation [1–4]. The functional analysis for individual Hsp has been documented. The members of the Hsp100 family play a critical role in heat tolerance [5,6]. The role of small Hsps in elevating thermotolerance in tobacco (Nicotiana plumbaginifolia) seedlings has been reported [7,8]. Charng et al. [9] reported that a novel heat-stress-associated 32-kD protein (Hsa32) accumulated in Arabidopsis thaliana seedlings after HS, which is required not for induction but rather maintenance of acquired thermotolerance. The results in our laboratory showed that Hsp genes atDjA2 and atDjA3 play roles in improving thermotolerance [10]. In addition to Hsps, heat shock transcription factors (HSF), which mediate the transcriptional activation of Hsp genes, have a unique function of increasing thermotolerance in Arabidopsis and tomato (Lycopersicon esculentum). Among at least 17 members in the tomato HSF family, LpHsfA1 has a unique role as master regulator of thermotolerance [11]. The suppression of AtHsfA1a activity impaired basal and acquired thermotolerance in Arabidopsis [12]. Li et al. [13] provided the proof for regulation of AtHsfA2 on expression of heat stress genes and thermotolerance in Arabidopsis. Charng et al. reported that the AtHsfA2 knockout mutant showed more sensitivity to severe heat stress than the wild type [14]. The role of AtHsfA3 regulated by upstream transcription factor DREB2A in improving thermotolerance in Arabidopsis has been documented recently [15,16].

However, the pathways by which HS signals are perceived and transduced to activate Hsp gene expression and induce thermotolerance remain unknown. Only a few models have been offered previously. Ananthan et al. [17] proposed that the accumulation of stress-denatured proteins could be the signal for increased expression of Hsp genes. The involvement of membrane fluidity and mitogen-activated protein kinases (MAPKs) in HS signal transduction was proposed [18]. Recent evidence shows that multiple signaling molecules, including H₂O₂, ethylene, abscisic acid (ABA) and salicylic acid (SA), are involved in HS response. The generation of reactive oxygen species (ROS) can induce Hsp synthesis, suggesting an intimate connection between HS response and oxidative stress [19– 22]. Our results indicated that HS induced a rapid increase in intracellular free calcium ion levels ([Ca²⁺]_i) of wheat (Triticum aestivum L.) seedlings and Arabidopsis suspension cells. The increase in [Ca2+]i regulates expression of Hsp genes and synthesis of Hsps through the following signaling molecules: calmodulin (CaM) → CaM-binding protein kinase or CaM-binding protein phosphatase \rightarrow the increase in binding activity of HSF to the heat shock element (HSE) \rightarrow induction of Hsp genes \rightarrow accumulation of Hsps, then improving heat tolerance in plants. Based on our findings, we propose a pathway for the participation of Ca²⁺–CaM in HS signal transduction. Herein, we discuss the signal molecules involved in the novel HS signal transduction pathway, combining our study with the research progress in the field worldwide.

2. Calcium initial response of heat shock signal transduction

Ca²⁺ has firmly been established as a primary intracellular second messenger in plants and is widely employed by eukaryotic organisms to regulate a variety of cellular processes directly or indirectly [23-26]. It was reported that HS induced a large increase in [Ca²⁺]_i in *Drosophila mela*nogaster, Chinese hamster and HeLa cells [27]. Heat shock also induced a 4-fold increase in the [Ca²⁺]_i in the protoplast of pea (Pisum sativum) leaves [28]. Gong et al. [29] observed that HS caused a rapid and transient increase in [Ca²⁺] in tobacco transformed with the Ca²⁺-sensitive, luminescent protein aequorin. We also observed that the initiation of this [Ca²⁺]_i increase occurred within 1 min of HS in wheat tissue. After 4 min of HS, the [Ca²⁺]_i reached a maximum 3-fold increase [30]. In suspension-cultured Arabidopsis cells expressing aequorin, [Ca²⁺]_i increased rapidly after HS and reached a maximum after 10 min of HS [31]. Further results demonstrated that the expression of Hsp genes was up-regulated by the addition of CaCl₂ and down-regulated by the calcium ion chelator EGTA, the calcium ion channel blockers LaCl₃ and verapamil, during HS at 37 °C. Moreover, Ca²⁺ is also involved in the synthesis of Hsps and HS-induced thermotolerance in wheat [30,32,33]. The rapid elevation in $[Ca^{2+}]_i$ caused by HS indicates that the change in $[Ca^{2+}]_i$ is an initial response of HS signal transduction. However, the molecular mechanism for rapid elevation of [Ca2+] induced by HS is not well understood.

Ca²⁺ ion channel genes in response to heat and cold sensors have been cloned from the dorsal root or trigeminal ganglia in mammals, which belong to the mammalian transient receptor potential (TRP) family of ion channels. Cold and thermal stimuli can be perceived by TRP, activating and turning on the TRP ion channel, allowing Ca²⁺ into neurons, resulting in a series of neural responses [34–36]. However, there has been no sequence data so far that could confirm the existence of the homologue of the TRP ion channel family in plants.

Major routes for influx of Ca²⁺ into cytoplasm from extracellular sources and intracellular Ca²⁺ pools are Ca²⁺ channels in the plasma membrane and endomembrane systems. The mechanisms by which Ca²⁺ channels are regulated are quite complicated [37]. The phosphoinositide-signaling pathway (PLC-IP₃) is one of the probable pathways by which Ca²⁺ entry into the cytoplasm from intracellular Ca²⁺ pools, causes the elevation in [Ca²⁺]_i.

Download English Version:

https://daneshyari.com/en/article/1548379

Download Persian Version:

https://daneshyari.com/article/1548379

<u>Daneshyari.com</u>