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H I G H L I G H T S

� An optimization of biomass produced during baker's yeast production is presented.
� Two different optimization approaches are presented.
� The two approaches lead to the determination of similar optimal operation conditions.
� The optimal solutions are in agreement with the industrial operations.
� The optimal solutions are validated with numerical and experimental data.
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a b s t r a c t

A macroscopic model describing the influence of nitrogen on a fed-batch baker's yeast production
process was used for the determination of optimal operating conditions in the sense of a production
criterion. To this end, two different approaches were used: a control vector parameterization approach
with mesh refinement and an approach based on the mathematical analysis of optimal operating policy
(semi-analytical approach). The results of the two approaches lead to the determination of similar
optimal operation conditions, which have been implemented for a new experimental phase. Moreover,
these optimal conditions are in agreement with the profiles obtained by industrial manufacturers
through an empirical optimization of the process (trial and error method). The model predictions are in
good accordance with experimental data. This conclusion was supported by an uncertainty analysis on
the model outputs with respect to the parameter estimation errors.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In recent decades, many efforts have been devoted to the
dynamic optimization and control of bioprocesses, and more
specifically, of cell cultures performed in fed-batch bioreactors.
The fed-batch operation mode is largely used in industry since it
allows the control of the biological phenomena taking place
within the bioreactor by manipulating the quantity of substrate
available throughout the culture (Chen, 2005; Dewasme et al.,
2010; Komives and Parker, 2003; Modak et al., 1986; Pomerleau,
1990).

In a fed-batch production context, the determination of opti-
mum operating conditions consists of the definition of a feeding
time profile optimizing a cost function (optimization criterion)

while taking into account all the constraints of the process
(working volume of bioreactor, maximum feeding rate of the
pumps, etc.). It should be noted that industrial practice is often
used to determine such a profile, at the stage of the process
development, based on a method of trial and error. Dynamic
optimization allows the computation of this profile by solving an
optimization problem formulated as a pre-defined performance
index (optimization criterion) that underlines the wishes of a
given industry (e.g. production, yield, productivity, or an econom-
ical index derived from the industrial operation) (Alford, 2006;
Amribt et al., 2014; Banga et al., 2005; Berber et al., 1998; Betts,
2010; Chen, 2005; Hunag et al., 2012; Modak et al., 1986; Renard,
2006; Valentinotti et al., 2003; van Impe and Bastin, 1995).

When the process model is known and relatively simple, this
problem can be solved analytically by applying the principle of the
Pontryagin minimum. But for more complex models, the solution
is difficult to obtain in an analytical form given the highly
nonlinear characteristics of the model used and the constraints
often present on both the system states and control variables.
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However, based on the analytical solutions obtained for simple
models, it is often possible to restrict the number of parameters
characterizing the optimization problem. (Banga et al., 2005;
Berber et al., 1998; Betts, 2010; Chen, 2005; Renard, 2006).

The dynamic optimization problems for complex models con-
tinue to present a challenge to researchers today. In this context,
nonlinear programming (NLP) is the simplest methodology for
solving this kind of optimization problem. The problem is defined
by a finite set of variables, by some constraints (system of
equalities and/or inequalities) and by an objective function to be
maximized or minimized, where all these can have nonlinear
characteristics (Banga et al., 2005; Betts, 2010; Chen, 2005).

However, in reality, optimal control problems involve, most of
time, continuous functions such as the feed rate (often chosen as
the control variable), which appears linearly in the system of
differential equations. Hence, the problem has an infinite dimen-
sion (singular problem), which is in opposition with the require-
ment of the finite dimension of the set of variables characterizing
the optimization problem for NLP resolution methodology. There-
fore, the conversion of the infinite-dimensional problem into a
finite-dimensional approximation can be convenient in order to
view this singular optimization problem as an infinite-dimensional
extension of a NLP problem (Banga et al., 2005; Betts, 2010; Chen,
2005).

The numerical methods for the solution of dynamic optimiza-
tion that transform the original dynamic optimization problem
into a nonlinear programming (NLP) problem are often classified
as direct methods (as opposed to indirect methods). Direct
approaches seem to be the currently preferred way for solving
dynamic optimization problems (Banga et al., 2005; Betts, 2010;
Chen, 2005).

There are basically two strategies for the optimization problem
formulation in direct approaches (Banga et al., 2005):

� Control vector parameterization (CVP): Only the control variables
(e.g. feeding time profile) are parameterized by using appro-
priate function approximations, resulting in a NLP problem for
which dimensionality is directly related to the discretization
level chosen for the control variables;

� Complete parameterization (CP), also called simultaneous strat-
egy: Both the controls and the states are parameterized by
using appropriate function approximations, resulting in a NLP
problem with a larger number of parameters which may be
computationally intensive to solve.

The control vector parameterization (CVP) approach is one of the
most-widely used techniques for the dynamic optimization of fed-
batch processes and is one of the two methods chosen in the
framework of this work (Banga et al., 2005).

After a brief introduction on the model of Richelle et al. (2014)
(Section 3.1), the optimization problem and the procedure to solve
it will be presented (Section 3.2). To this end, two different
approaches will be presented: a control vector parameterization
approach (Section 3.2.1) and an approach based on the mathema-
tical analysis of optimal operation (semi-analytical approach)
(Section 3.2.2). The two approaches will be compared with
numerical and experimental data (Section 4).

2. Materials and methods

2.1. Microorganism

The microorganism used in this work was a Saccharomyces
cerevisiae commercial strain. The microorganism was maintained
on Petri dishes (glucose 20 g/L, yeast extract 10 g/L, agar-agar 20 g/L)

at 4 1C. Periodic inoculations were made in new Petri dishes every
4 months.

2.2. Inoculum development, medium composition and
experimental conditions

Inoculum was grown at 30 1C and 250 rpm overnight in a 1 L
flask containing 250 mL of a medium having the following
composition (per liter of solution): glucose, 20 g; (NH4)2SO4,
13.5 g; yeast extract, 13.5 g; KH2PO4, 3.5 g; MgSO4 �7H2O, 1.7 g;
CaCl2 �2H2O 1.7 g. Fed-batch culture was performed during 20 h in
a 20 L bioreactor (Biostat C-DCU3, Sartorius B. Braun Biotech
International) using an initial biomass concentration of 0.1 g/L
dry weight and a start volume of 6.5 L with the same medium
composition than for flask but without glucose and ammonium
sulfate. The glucose concentration of the feeding was 300 g/L and
the concentration of (NH4)2SO4 was 33 g/L. The composition of the
feeding has been chosen to mimic industrial conditions of produc-
tion. The culture was performed at 30 1C at a stirrer speed of
750 rpm and an air flow of 20 slpm in order to ensure purely
aerobic conditions. The pH was maintained at 5 with KOH 5 M.
Samples of 0.1 L are taken every 2 h until at the 10th hour of
culture. During the next 3 h, samples of 0.075 L are taken every
hour. Thereafter and until the end of culture, the volume of
samples taken every hour is 0.05 L. These samples were used to
measure biomass, glucose, nitrogen and ethanol concentration in
the medium. All measurements were made in triplicate.

2.3. Analytical methods

2.3.1. Biomass
The yeast growth was followed by measuring the optical

density of the culture at 650 nm with an UV–Vis spectrophot-
ometer (Genesys 10, Thermo Electron Corporation) and by dry
weight determinations. Samples (1 mL each) were centrifuged for
5 min at 10,000 rpm, washed twice with deionized water, dried for
24 h at 105 1C, and stored in a desiccator before being weighted.
A correlation between dry weight and optical density was
established.

2.3.2. Glucose
The glucose concentration was determined by the glucose

oxidase method using an enzymatic kit assay (Glucose-RTU,
Biomérieux) and the absorbance was read at 505 nm in 96-well
plates with a spectrophotometric microplate reader (Epoch,
BioTek).

2.3.3. Nitrogen
The nitrogen concentration was determined by the phenol-

hypochlorite method. The blue color of indo-phenol was formed
by the reactions of ammonia with a hypochlorite-alkaline and a
phenol-nitroprusside solutions. The absorbance was read at
550 nm in 96-well plates with a spectrophotometric microplate
reader (Epoch, BioTek).

2.3.4. Ethanol
The ethanol concentration was measured using an enzymatic

kit assay (K-ETOH, Megazyme).

3. Problem statement and model presentation

3.1. Macroscopic modelling of baker's yeast production

On the basis of a set of biological reactions, inspired by the
model of Sonnleitner and Käppeli (1986), Richelle et al. (2014)
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