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H I G H L I G H T S

� Modeling of free surface in bubble
column is done using hybrid VOF-DBM
approach.

� Free surface dynamics is captured in
great detail in the model.

� Numerical parameters are tuned using
experimental data from previous
studies.

� A coalescence calibration factor and a
critical Weber number are suggested
using the study.
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a b s t r a c t

In this work, two powerful methods are combined for bubble column simulations namely, the volume of
fluid and the discrete bubble model. While the former method takes care of the free surface, the discrete
bubble model tracks and handles the dynamics of the dispersed bubbles. The hybrid model presented in
this work is verified and validated with existing established experimental results. A model parameter
study for bubble break-up and coalescence is performed to find the optimum values of the model
parameters, i.e. the critical Weber number and the coalescence calibration factor.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Bubbly flows are encountered in a variety of industrial applica-
tions. The majority of these flows entails a free surface, through
which the bubbles leave the liquid. Experimental investigations of
bubbly flows are difficult: the dynamic nature of the bubbly flow
requires dynamic techniques that ideally do not disturb the flow.
Moreover, for large systems one can either only measure macro-
scopic parameters like overall gas holdup or one is practically

limited to measurements at a finite number of sample points. For
such circumstances, computational fluid dynamics (CFD) has
proven to be useful to extend the understanding of these flows,
and to provide detailed information, both in space and time.

Several types of CFD models, dedicated to different length and
time scales have been developed in the past few decades. Some
authors adopt a multi-scale approach to understand and model
large scale systems (Deen et al., 2004; Van der Hoef et al., 2004;
Deen et al., 2007). In this approach, fully resolved simulations, also
known as direct numerical simulation (DNS), are performed to
obtain the micro-scale data. Through DNS studies, closures for
various kinds of forces and coefficients are obtained, which can
be used in coarse grained models like Euler–Lagrange models or
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two-fluid models (TFM). Usually, Euler–Lagrange models are
employed for lab-scale simulations, while the TFM can be
extended to industrial scale too. The advantage of using the former
over TFM is that it provides details of bubble population in these
bubbly flows, e.g. bubble size distributions are a direct result of the
simulation.

Euler–Lagrange models usually treat the gas–liquid interface at
the top of the column via some artificial boundary condition or a
buffer zone technique (Streett and Macaraeg, 1989; Thompson,
1990; Poinsot and Lele, 1992; Pruett et al., 1995). The downsides of
such boundary treatment are that (i) unphysical liquid circulation
over the top surface can arise, and (ii) the dynamics of the free
surface is ignored. In this study, an attempt has been made to
formulate a numerical model introducing the free surface at the
top of the column in the Euler–Lagrange framework. The model
presented here combines the volume of fluid (VOF) model of van
Sint Annaland et al. (2005) and the discrete bubble model (DBM)
of Darmana et al. (2005). The hybrid model uses DBM to study the
bubble and fluid dynamics in the bubble column, and the volume
of fluid method to treat the free surface. Such a model formulation
takes care of all the three phases, namely the liquid, the bubble
and the gas phase. It is noted here that the bubbles are repre-
sented as dispersed elements, while the gas is treated as a
continuous phase.

Volume of Fluid (VOF) methods (Hirt and Nichols, 1981;
Youngs, 1982) employ a color function F(x,y,z,t) that indicates the
fractional amount of fluid present at a certain position (x,y,z) at
time t. The advection equation for F is usually solved using a
geometrical advection scheme, in order to minimize numerical
diffusion. In addition to the value of the color function, the
interface orientation needs to be determined, which follows from
the gradient of the color function. The VOF technique in this work
uses the piecewise linear interface calculation (PLIC) method of
Youngs (1982) to reconstruct the interface.

In the discrete bubble model or Euler–Lagrange model, one
phase (fluid) is solved on a Eulerian grid, while the other phase
(bubbles, drops, particles etc.) is solved using the Lagrangian
approach. The DBM accounts for bubble–liquid and bubble–bubble
interaction using two way fluid–bubble coupling and a hard
sphere collision model by Hoomans et al. (1996). In the current
implementation, the bubbles are removed from the simulations
domain as they reach the gas–liquid free surface.

Attempts have been made in the past to formulate models that
combine interface tracking with bubble/particle/drop tracking.
Tomiyama and Shimada (2001) have proposed a NP2 model, where
they have combined the multi-fluid model with an interface
tracking scheme. In the NP2 model, all the phases are solved in
the Eulerian domain. Many authors have combined the discrete
phase approach with the interface tracking, using CFD packages like
Fluent and OpenFoam (Cloete et al., 2009; Mahrla and Hinrichsen,
2012; van Vliet et al., 2013). However, the basic disadvantage
associated with these models is that the volume fraction of
bubbles/particles is not considered while solving for the fluid-
phase mass and momentum conservation equations. In dense
bubbly flows, the volume fraction of bubbles should be accounted
for in these equations. Therefore models excluding this aspect are
valid only for dilute flows and should not be extended for studying
systems with high volume fractions of the discrete phase. The
model presented here overcomes the aforementioned shortcoming
and will allow us to study dense bubbly flows with a free surface.

The organization of this paper is as follows: first the description
of the model and the numerical solution method is given. Subse-
quently, numerical verification and experimental validation of the
method is provided, where the simulated test cases are examined
against the experimental findings from Deen et al. (2001). In the
next section, a numerical parameter study of coalescence and

breakup parameters is presented and discussed; and finally, the
conclusions are presented.

2. Governing equations

Our model consists of two main parts: one part accounts for the
presence of the gas–liquid free surface (VOF model) whereas the
other part accounts for the presence of the bubbles in the liquid,
taking into consideration the possible collisions between the
bubbles themselves and/or confining walls (DBM). First, the main
conservation equations are presented along with the incorporation
of surface tension and the advection of the deformable interfaces.
The fluid–bubble coupling and the bubble dynamics are subse-
quently described.

2.1. Mass and momentum conservation

The mass conservation equation for the fluid phase is described
through the continuity equation:

∂εf
∂t

þ∇ � ðεfuf Þ ¼ 0 ð1Þ

where ε, and u represent the volume fraction and velocity,
respectively. The subscript f refers to the fluid phase. The fluid
phase includes both the liquid (l) and the gas (g) phases.

The momentum conservation can be described by the volume-
averaged Navier–Stokes equations:

ρf
∂ðεfuf Þ

∂t
þ∇ � ðεfufuf Þ

� �
¼ �εf∇p�∇

� ðεf τf Þþρf εf g� f σ� f l-b ð2Þ
where f σ is the surface tension term, and f l-b is the forcing term
for bubble–liquid interactions. Here the subscript b represents the
bubble phase. Note that when εf ¼ 1, the single phase Navier–
Stokes equations are retained.

2.2. Volume of fluid approach

The volume of fluid approach uses the fractional amount of
liquid to determine the interface position and orientation in a
given cell. This fractional amount of liquid is often called the color
function and is denoted by F.

F ¼ εl
ðεlþεgÞ

¼ εl
εf

ð3Þ

The liquid and the continuous gas together are regarded as the
fluid phase (εf), the motion of which is described with an
advection equation:

DF
Dt

¼ ∂F
∂t

þuf � ∇F ¼ 0 ð4Þ

The fluid phase density is defined as

ρf ¼ Fρlþð1�FÞρg ð5Þ
The local average fluid viscosity is calculated using a more

fundamental approach proposed by Prosperetti (2002), via har-
monic averaging of the kinematic viscosity of the involved phases
according to the following expression:
ρf

μf
¼ F

ρl

μl
þð1�FÞρg

μg
ð6Þ

2.2.1. Surface tension model
Among the surface tension models present, a recent publica-

tion by Baltussen et al. (2014) proposed a model for highly curved
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