Chinese Materials Research Society

Progress in Natural Science: Materials International

www.elsevier.com/locate/pnsmi www.sciencedirect.com

ORIGINAL RESEARCH

Effect of Sr on microstructure and aging behavior of Mg-14Li alloys

Bin Jiang^{a,b,c,*}, Ying Zeng^b, Hengmei Yin^{a,b}, Ruihong Li^{a,b}, Fusheng Pan^{a,b}

^aNational Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400030, China ^bCollege of Materials Science and Engineering, Chongqing University, Chongqing 400030, China ^cNew Materials Center, Chongqing Academy of Science and Technology, Chongqing 401123, China

Received 21 February 2012; accepted 1 March 2012 Available online 15 April 2012

KEYWORDS

Magnesium–lithium alloys; Microstructure; Grain refinement; Aging behavior Abstract The as-cast and as-extruded Mg–14 wt%Li–xSr (x=0.14, 0.19, 0.39 wt%) alloys were, respectively, prepared through a simple alloying process and hot extrusion. The effects of Sr addition on microstructure and aging behavior of the Mg–14 wt%Li–xSr alloys were studied. The results indicated that β (Li) and Mg₂Sr were the two primary phases in the microstructures of both as-cast and as-extruded Mg–14 wt%Li–xSr alloys. Interestingly, with the increase of Sr content from 0.14 wt% to 0.39 wt%, the grain sizes of the as-cast and as-extruded Mg–14 wt%Li–xSr alloys markedly decreased from 5000 µm and 38 µm to 330 µm and 22 µm respectively, while no obvious changes of the micro-hardness and microstructure of the as-extruded alloys were observed during the aging treatment.

© 2012. Chinese Materials Research Society. Production and hosting by Elsevier Ltd. All rights reserved.

*Corresponding author at: National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400030, China. Tel.: +86 13594190166; fax: +86 23 65111140.

E-mail address: jiangbinrong@cqu.edu.cn (B. Jiang).

1002-0071 © 2012. Chinese Materials Research Society. Production and hosting by Elsevier Ltd. All rights reserved.

Peer review under the responsibility of Chinese Materials Research Society.

http://dx.doi.org/10.1016/j.pnsc.2012.03.013

Production and hosting by Elsevier

1. Introduction

Mg–Li alloys have the potential applications for the lightweight demand components in various industries, such as aviation, aerospace and electronics due to their good plasticity and low density [1,2]. It is worth noting that lithium content can definitely determine the microstructures and properties of Mg–Li alloys relying on different phase structures [3]. For an instance, Mg–14 wt%Li alloy has body center cubic structure of the single β (Li) phase, which is a Mg–Li solid solution, and has a lower strength, impeding its wide applications [4].

In order to improve the strength of Mg–Li alloys, various novel approaches, such as, composite reinforcement [5,6] and rapid solidification [7] were developed. Considering that the composite reinforcement sacrifices the plasticity and the rapid solidification processing is costly for mass production, traditional minor

alloying appears to be a simple and effective approach to strengthen the alloy through grain refinement without significant reduction of plasticity [8–10]. For example, Al and Zn are often selected as alloving elements of Mg-14 wt%Li alloy due to their obvious solid solution strengthening effects [2,11] and due to aging strengthening because of the formation of some intermetallic compounds like Li₂MgAl in Mg-14Li-1Al (LA141) or Li₂MgZn in Mg-14Li-1Zn (LZ141). However, Li₂MgAl or Li₂MgZn is metastable and will resolve at 66 °C or even at room temperature as LiMgAl₂ or LiMgZn, respectively, and hence has no strengthening effect for $\beta(Li)$ with the increase of aging time [12–16], resulting in over-aging of LA141 or LZ141 [12-17]. Therefore, ideal candidates need to be explored and developed, pursuing the advanced Mg-14Li alloys with fine microstructure and no overaging. The results of many researches show that Sr has a good grain refinement effect on Al alloys [18,19], and also has an effective role in grain refinement of Mg alloys, and hence improve their properties. For example, the benefit of Sr addition in AZ91 [20,21], ZK60 [22], and Mg-Al-Ca alloys [23] were successfully realized.

In the present investigation, minor Sr addition was used to prepare the Mg-14Li-*x*Sr alloys with body center cubic structure through a simple alloying process and hot extrusion. In the Mg-14Li-*x*Sr alloys, Mg-Sr intermetallic compound

 Table 1
 Chemical compositions of the experiment alloys (wt%).

Designed composition	Measured composition
Mg-14Li-1Al	Mg-14.01Li-1.09A1
Mg-14Li-0.1Sr	Mg-13.63Li-0.14Sr
Mg-14Li-0.3Sr	Mg-14.10Li-0.19Sr
Mg-14Li-0.5Sr	Mg-14.27Li-0.39Sr

preferentially formed during solidification since the difference in electro-negativity ($\Delta EN = 0.36$) between Mg and Sr is higher than that between Li and Sr ($\Delta EN = 0.33$) [24]. Through the crystallography examination using the edge-to-edge matching model which has successfully predicted AlN [25], ZnO [26], Al₂Y [27–29], TiB₂ [30] compounds as an effective grain refiner for Mg–3Al–1Zn, Mg–10Y and Mg–5Li–3Al alloys, there is a crystallography matching relationship between Mg₂Sr and Li. Mg₂Sr can be considered as a potential grain refiner for the Mg–14Li–xSr alloys. Additionally, according to Mg–Sr and Li–Sr binary phase diagram [31], the Mg₂Sr compound has higher melting point than Li–Sr compounds. Therefore, Mg₂Sr has higher thermal stability and should not be decomposed during the aging treatment of the Mg–14Li–xSr alloys,

Fig. 2 Variation of grain size of the as-cast Mg-14 wt%Li alloys with various contents of Sr.

Fig. 1 As-cast microstructures of LA141 alloy (a) and Mg-14Li alloys with different Sr contents (b) 0.14 wt%, (c) 0.19 wt%, and (d) 0.39 wt%.

Download English Version:

https://daneshyari.com/en/article/1548658

Download Persian Version:

https://daneshyari.com/article/1548658

Daneshyari.com