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HIGHLIGHTS

e A computationally efficient PBM-ANN model was developed to substitute for a high fidelity PBM-DEM model.
e The PBM-ANN model demonstrated excellent agreement when compared with the PBM-DEM model. The PBM-ANN model was solved at a fraction of

the simulation time of the PBM-DEM model.
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Wet granulation is a particle design process, often used in the pharmaceutical, consumer product, food,
and fertilizer industries. A better process understanding is needed to improve process design, control,
and optimization. Predominantly, two modeling frameworks are implemented to simulate granulation
processes: population balance modeling (PBM) and discrete element methods (DEM). While PBM
simulates changes in the number of particles in each size class due to rate processes such as aggregation,
DEM tracks each particle individually, with the abilities to simulate spatial variations and collect
mechanistic data. In this bi-directional coupled approach, the computational expenditure of the full
model is overwhelmed by the high-fidelity DEM algorithm that needs to solve a set of ODEs for each and
every particle being handled in the system for very small time intervals. To mitigate this computational
inefficiency, reduced order modeling (ROM) is used to replace the computationally expensive DEM step.
An artificial neural network (ANN) was trained using DEM results to relate particle size, size distribution,
and impeller speed to the collision frequency. Results showed a high correlation between the trained
ANN predictions and DEM-generated data. The ANN was coupled with a PBM as a key component of the
aggregation rate kernel. The coupled model showed a different development of average particle size
and size distribution over time from that of a constant aggregation rate kernel. In addition, the
coupled model demonstrated sensitivity to the impeller speed via the ANN rate kernel. When compared
with the fully coupled PBM-DEM model for accuracy and computation time savings, the hybrid
PBM-ANN model demonstrated excellent agreement with DEM simulations at fractions of the original
computational time.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

batches. In recent years, in a move from batch to continuous
processes, the industry has redoubled its efforts to focus on a Quality

Modeling of particulate systems is of critical importance within
the chemical and pharmaceutical industries, and yet it remains
relatively poorly understood. Traditionally, the pharmaceutical
industry has implemented a Quality by Testing (QbT) approach
to product manufacturing which involves sampling the products of
empirically designed processes and rejecting out-of-specification
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by Design (QbD) practice to improve controllability, scalability, and
profitability. The QbD approach aims to better understand and define
the design space and operating parameters that will result in quality
products and has elevated the urgency to establish robust parti-
culate system models (Yu, 2008). To develop practical and predictive
models of pharmaceutical processes, an effective model-based
approach has been proposed in which mathematical process models
are developed and validated using experimental data (Glaser et al.,
2009; Ramachandran and Chaudhury, 2012). For the highly complex
process of wet granulation, which is governed by the rate processes
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of wetting and nucleation, aggregation and consolidation, and break-
age and attrition (Iveson et al., 2001), empirical models have limited
applicability outside the space of the calibration data set (Barrasso
et al., 2014; Chaudhury et al., 2014). To overcome these limitations, a
multi-scale modeling approach in which mechanistic information
from a discrete element method (DEM) model is provided to the
population balance model (PBM) via a reduced order model (ROM).

1.1. Modeling powder processes: Population balance models and
discrete element methods

Two modeling frameworks are predominantly used to simulate
particulate processes: the semi-empirically-driven PBM and the
more mechanistic DEM.

Population balance equations have been extensively used to
model particulate processes including granulation, crystallization,
mixing, milling and drying applications of pharmaceutical pro-
ducts (Reynolds, 2010; Griffin et al., 2010; Mortier et al., 2013;
Barrasso and Ramachandran, 2012; Sen and Ramachandran, 2013).
The PBM groups the particles into a set of classes based on one or
more properties, such as size, liquid content, and porosity. The
number of particles in each of these classes, or bins, is tracked over
time by evaluating rate processes, such as aggregation, breakage,
nucleation, and growth. These rate expressions are often empirical
and require ample experimental data to estimate unknown para-
meters, resulting in poor predictability outside the experimental
design space and limited understanding of the effects of process
parameters and material processes on the critical quality attributes
of the process (Barrasso et al., 2014; Chaudhury et al., 2014).

In contrast, DEM models track each individual particle as it
moves through space, colliding with equipment walls, blades, and
other particles. Using Newton’s laws of physics and supplemental
contact models, such as the Hertz—Mindlin model, net forces are
calculated and applied to each particle. Although recent studies
have demonstrated that DEM can be used to obtain detailed
mechanistic information such as collision frequencies, impact
velocities and forces (Yang et al., 2003; Gantt and Gatzke, 2005;
Hassanpour et al., 2011), more direct investigations are needed to
decisively validate these collision-level predictions from DEM.
In the study by Freireich et al. (2009), the justification of collision-
scale DEM predictions through verification of particle velocity and
solid fraction fields using experimental techniques such as particle
image velocimetry or positron emission particle tracking was shown
to be an insufficient validation (Freireich et al., 2009). Nevertheless,
at flow-level the measured macroscopic trends were well captured
by DEM models despite the difference in collision-level behavior
(Freireich et al.,, 2009; Di Renzo and Di Maio, 2004). Under these
circumstances, the use of DEM simulations to obtain necessary
granular flow information in this study has been restricted to
approximate only the net collision frequencies between particle size
combinations at a flow-scale level. Besides collision frequencies, DEM
simulations can provide additional flow-level information such as
shear stresses and spatial inhomogeneities. In addition, DEM simula-
tions are highly computationally intensive and generally unsuitable
for practical applications such as parameter estimation, control, and
optimization (Ketterhagen et al., 2008).

A critical difference between PBM and DEM is the treatment of the
rate processes: while DEM simulations cannot independently simulate
particle size and property changes resulting from the subprocesses in
wet granulation, PBM models also cannot independently capture the
detailed granulation behavior without empirical parameters inherent
in its kernels. As a result, recent studies have focused on coupling PBM
and DEM to take advantage of both models’ individual strength. In the
study by Reinhold and Briesen (2012), for instance, the aggregation
kernel is developed by coupling discrete element simulations with a
PBM. Wang et al. (2012) similarly utilizes DEM to obtain collision and

dissipation energies during the granule breakage processes in a ball
milling operation to link with PBM. Other coupled models have
investigated coupling PBM and DEM with Computational Fluid
Dynamics (CFD) for particle-fluid interactions in fluidized bed granu-
lation processes (Rajniak et al., 2009; Fries et al.,, 2011; Sen et al., 2014).

1.2. Reduced order models and artificial neural networks

One of the main issues with using a computationally complex
model such as a DEM simulation is its inefficiency while being
used for overall system analysis which entails iterative calcula-
tions. DEM simulations have a high computational cost because
they solve a set of ODEs for each and every particle being handled
in the system for very small time intervals (usually around 10~ s)
while also tracking their interactions and spatial movement
(Boukouvala et al., 2013; Lucia et al., 2004). Iterative calculations
required for system optimization or parameter estimation will
thus take a significantly large amount of time because the base
model calculations are protracted themselves. This computational
inefficiency poses a significant computational challenge to imple-
menting a multi-scale coupled model using PBM and DEM. While
a simple PBM can simulate a full process in seconds or minutes, a
DEM simulation can take hours or days of computation time,
depending on the choice of software and hardware, to solve for
only a few seconds of physical time. This problem is exacerbated
with large numbers of particles and small particle sizes, often the
case in particulate processes (Ketterhagen et al., 2008).

In order to deal with this issue, three popular, computationally-
economical approaches are usually implemented as an alternative
for modeling the entire granulation system: periodic section DEM
simulation, simulation of larger and fewer particles and reduced
order models (ROMs). In the periodic section approach, taking
advantage of the symmetric geometry of a granulator, simulations
of a segment of the granulator are performed rather than the
entire system. Since DEM calculations scale non-linearly with the
number of particles, running multiple smaller simulations of the
entire system is computationally faster than simulating the entire
system itself (Dubey et al, 2011; Gao et al, 2012). Another
common approach to reduce the DEM calculation time is to mimic
the original granulation system in DEM with a system with fewer
but larger particles. This reduction entails adjusting the particle
densities to maintain similar momentum exchange between
particles; however, additional sensitivity studies on the effect of
particle size on the powder dynamics needs to be performed
before such reduction can be made (Hassanpour et al., 2011). The
final alternative approach is to develop ROMs through data fitting
techniques to replace the computationally intensive, high-fidelity
DEM models. Even though a smaller system of particles are being
simulated in the periodic section approach, the fact that DEM
algorithm needs to be implemented multiple times for system
analysis necessitates investigation into drastically faster reduced
order modeling techniques. Various data fitting techniques
are available in literature that have been used to replace full
scale models including response surface methodology (RSM)
(Boukouvala et al., 2010; Jia et al., 2009; Ranjbarian and Farhadi,
2013), Kriging method (Gao et al., 2012; Jia et al., 2009; Ranjbarian
and Farhadi, 2013), high dimensional model representations
(HDMR) (Banerjee et al., 2010; Banarjee and lerapetritou, 2004),
and artificial neural networking (ANN) (Boukouvala et al., 2010,
2011; Akkisetty et al., 2010; Basheer and Hajmeer, 2000). Devel-
oping such reduced-order models not only provide a quantita-
tively accurate description of the system dynamics which are far
less computationally taxing than the original models but also provide
a means by which the system dynamics can be readily interpreted for
process simulation and optimization purposes (Lucia et al., 2004).
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