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Abstract

Evolutionary algorithms (EAs) are a class of general optimization algorithms which are applicable to functions that are multimodal,
non-differentiable, or even discontinuous. In this paper, a novel evolutionary algorithm is proposed to solve global numerical optimiza-
tion with continuous variables. In order to make the algorithm more robust, the initial population is generated by combining determinate
factors with random ones, and a decent scale function is designed to tailor the crossover operator so that it can not only find the decent
direction quickly but also keep scanning evenly in the whole feasible space. In addition, to improve the performance of the algorithm, a
mutation operator which increases the convergence-rate and ensures the convergence of the proposed algorithm is designed. Then, the
global convergence of the presented algorithm is proved in detail. Finally, the presented algorithm is executed to solve 24 benchmark
problems, and the results show that the convergence-rate of the proposed algorithm is much faster than that of the compared algorithms.
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1. Introduction

During the past three decades, global optimization
problems have been intensively studied in various areas.
A number of algorithms for the global optimization prob-
lem arise and all these can be divided roughly into two
main classes: the determinate method [1,2] and stochastic
modeling method [3,4]. In global optimization problems,
algorithms may tend to get stuck in local minima, and
the convergence-rates of them are usually very low when
there are numerous local optima [5].

Evolutionary algorithm (EA) is a kind of global random
search methods based on life evolution mechanisms. It con-
tains Genetic Algorithm (GA) [6], Evolutionary Program-

ming (EP) [7], Evolutionary Strategy (ES) [8] and Genetic
Programming (GP) [9]. The main features of the EA are
swarm exploration and global performance. EA is suitable
for the problems with both discrete variables and continu-
ous variables, and does not need to get exact priori knowl-
edge on the problems. In the existing algorithms, EA has
received considerable attention regarding its potential to
solve complex global optimization problems. However,
low convergence-rate and prematurity are also challenging
problems for EA.

The crossover operator and mutation operator are the
main components to improve the EA’s behavior [7,10].
Improvements have been sought in the optimal crossover
rates, mutation rates and a more powerful alternative
crossover or mutation [11]. In this paper, to enhance the
algorithm, a crossover operator which keeps global search
when finding descent directions and a mutation operator
which balances global exploration and local search are
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designed. Furthermore, to speed up the convergence, when
producing the initial population, both determinate method
and random method are employed. Based on these opera-
tions, a novel evolutionary algorithm for global numerical
optimization with continuous variables is proposed.

2. Novel evolutionary algorithm for global optimization

Consider the following global optimization problem:

min
L6X6U

f ðX Þ ð1Þ

where X=(x1, x2, . . .,xN)T is a variable vector in RN, N is
the dimension of the problem, f(X) is the objective func-
tion, and L=(l1, . . ., ln)T and U=(u1, . . .,uN)T define the fea-
sible solution space. We denote the domain of xi by [li, ui],
and the feasible solution space by [L, U].

2.1. Initial population

Here each individual is taken as a vector of floating-
point numbers, with the same length as that of decision
variables. The initial population is generated as follows:
(x1, x2, . . .,xN)T represents a solution to the optimization
problem. pop individuals, where pop is population size,
are produced by the following two algorithms. 1/m initial
population, where m is a pre-specified number, is produced
by Algorithm 1; others are generated by Algorithm 2.

Algorithm 1.

Step 1: Produce a random vector ra in [0, 1]N uniformly.
Let k=1.
Step 2: Compute X=L+(U�L) � k/dpop/me+(U�L)�ra/
dpop/me, k = k + 1.
Step 3: If k 6 dpop/me, go to step 2.

Remark 1. Algorithm 1 divides the domain [L, U] into
dpop/me equal parts, and generates one individual in every
part uniformly. Thus, some determinate factors are added
into the initial population.

Algorithm 2.

Step 1: Produce a random vector ra in [0, 1]N uniformly.
Let k = 1.
Step 2: Compute X = L+(U�L)�ra, k = k + 1.
Step 3: If k 6 pop�dpop/me, go to step 2.

Remark 2. In Algorithm 2, (pop�dpop/me) individuals are
produced randomly in the searching space.

2.2. Crossover operator

In order to find the decent direction quickly, a decent
scale function is introduced in this subsection. And accord-

ing to the relationship between the population and the
decent scale function, a crossover operator is constructed.

The decent scale function is defined as ŷ ¼ f ðeX Þ � d,
where eX denotes the optimal solution in the population
of the current generation. In numerical experiments of Sec-
tion 4, d ¼ k j f ðeX Þ j, k = 1/10000.

Definition 1. For problem (1) and points X, Y 2 [L, U], X is
better than Y if f(X) < f(Y).

Let X=(x1, x2, . . .,xN)T and Y=(y1, y2, . . .,yN)T be the
crossover parents, t the current generation, En,1=(1,
1, . . ., 1)T the unit vector, and g0 a parameter for generating
the temporary offspring. The crossover offspring is pro-
duced by Algorithm 3.

Algorithm 3.

Step 1: Let Z1=(z11, z12, . . .,z1N)T = a1X + b1Y, Z2=(z21,
z22, . . .,z2N)T = a2X + b2Y, where a1, b1, a2, b2 are real
numbers such that z1 and z2 are in the feasible solution
space. Compute f(Z1), f(Z2), f(X), f(Y) and add Z1, Z2,
X, Y to the temporary offspring set. Let g = 1, j = 4,
where j denotes the size of the temporary offspring set.
Step 2: Denote the better one between X and Y as
V=(v1, v2, . . .,vN)T. For k=1 to 2,

For 1 6 i 6 N, denote the line passing through (vi, f(V))
and (zki, f(Zk)) as L1, the line presenting ŷ ¼ f ðeX Þ � d as
L2. If L1 and L2 intersect at point pint=(pint.x, pint.y), leteZ jþk;i ¼ pint:x. Otherwise, eZ jþk;i ¼ vi. Let the (j+k)th tem-
porary offspring Zjþk ¼ ðeZ jþk;1; . . . ; eZ jþk;N ÞT and add Zj+k

to the temporary offspring set. j = j + 2.

Step 3: Select crossover offspring in the temporary off-
spring set. Denote the temporary offsprings better thaneX as Z1, Z2, . . .,Zq.

If q < 2 and g < g0, let ŷ ¼ ŷ � d, g = g + 1, go to step 2;
otherwise, choose the best two individuals in the temporary
offspring set as the crossover offspring. Stop.

From the above algorithm, the crossover offsprings are
always better than the parents.

2.3. Mutation operator

The non-uniform mutation operator is introduced in
Ref. [12] is as follows:

x0k ¼
xk þ ðuk � xkÞr½1� t=T �b if randomð0; 1Þ ¼ 0

xk � ðxk � lkÞr½1� t=T �b if randomð0; 1Þ ¼ 1

(
where X={x1, . . .,xN}T is the mutation parent,
k ¼ 1 � n;X 0 ¼ ðx01; . . . ; x0N Þ

T is the resulting offspring, t is
the current generation, T is the maximal number of gener-
ations,r is a random number in [0, 1] uniformly, b is a sys-
tem parameter which determines the dependence degree of
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