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H I G H L I G H T S

� A simulation framework for hetero-
geneous bubbly flow is presented.

� A Lagrangian breakup model is pro-
posed.

� The daughter size distribution does
not influence the bubble size
distribution (BSD).

� The critical Weber number and
superficial gas velocity significantly
affect the BSD.
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a b s t r a c t

In this work we present a numerical model to predict the bubble size distribution in turbulent bubbly
flows. The continuous phase is described by the volume-averaged Navier–Stokes equations, which are
solved on an Eulerian grid, whereas the dispersed or bubble phase is treated in a Lagrangian manner,
where each individual bubble is tracked throughout the computational domain. Collisions between
bubbles are described by means of a hard-sphere model. Coalescence of bubbles is modeled via a
stochastic inter-particle encounter model. A break-up model is implemented with a break-up constraint
on the basis of a critical Weber value augmented with a model for the daughter size distribution.
A numerical parameter study is performed of the bubble break-up model implemented in the
deterministic Euler–Lagrange framework and its effect on the bubble size distribution (BSD) is reported.
A square bubble column operated at a superficial gas velocity of 2 cm/s is chosen as a simulation base
case to evaluate the parameters. The parameters that are varied are the values of the critical Weber
number (Wecrit), the daughter size distribution (β) and the superficial gas velocity (vsup). Changes in the
values of Wecrit and vsup have a significant impact on the overall BSD, while a different shaped β did not
show a significant difference.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In turbulent bubbly flows, coalescence and break-up of bubbles
determine the bubble size distribution and the corresponding
interfacial area. Hence, these phenomena play a crucial role in

mass and heat transfer operations in bubbly flows. To predict the
bubble size distribution in industrial bubbly flows, the population
balance equation (PBE) embedded in the Euler–Euler model is
often used. Traditionally the Euler–Euler model treats the dis-
persed gas phase as a separate continuum with averaged proper-
ties, i.e. mean bubble diameter. The disadvantage is that the
information regarding individual bubbles is not available. To retain
the bubble size distribution a PBE is employed. The PBE handles
the evolution of the size distribution of the dispersed phase
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statistically through coalescence and break-up models. The PBE or
number density transport equation considers bubbles entering
and leaving a control volume through different mechanisms, such
as convection, break-up/coalescence or evaporation/condensation.
Many mathematical models presented in the literature for coales-
cence and break-up of bubbles (or droplets) are derived for the use
in the PBE. Lasheras et al. (2002) and Liao and Lucas (2009) have
given excellent reviews of literature break-up models; and Liao
and Lucas (2010) for coalescence models.

Contrary to the classical Euler–Euler model, Euler–Lagrange
models offer the advantage that the bubble size distribution is
produced as part of the solution, provided that appropriate
coalescence and break-up models are incorporated. Sungkorn
et al. (2012) belong to the very few, who adopted the Euler–
Lagrange framework to study the bubble size distribution (BSD). In
their model, bubble parcels are treated in a Lagrangian manner,
employing the break-up model of Prince and Blanch (1990) and
the coalescence model of Luo and Svendsen (1996). Instead of
bubble parcels, Darmana et al. (2006) tracked individual bubbles
and treats coalescence in a deterministic fashion after contact of
two individual bubbles. The proposed coalescence model is based
on the stochastic model of Sommerfeld et al. (2003) whereas
break-up of individual bubbles was not incorporated. Building
upon the work of Darmana et al. (2006), a deterministic Euler–
Lagrange model is presented in this chapter along with the
implementation of a bubble break-up model. Similar to coales-
cence models, incorporation of break-up models originally devel-
oped for PBE models in the Euler–Lagrange model is not
straightforward. This is due to differences in the mathematical
representation, however the underlying physics to represent these
phenomena will still hold. The associated constraints can still be
used to formulate criterions for coalescence and break-up in the
Euler–Lagrange model. Coalescence models for the PBE are given
in terms of a coalescence frequency:

Θcoðdi; djÞ ¼ hcollðdi; djÞγcoðdi; djÞ ð1Þ

where hcollðdi; djÞ is the collision frequency between two bubbles
with diameters of di and dj; and γcoðdi; djÞ is the corresponding
coalescence efficiency. In the Euler–Lagrange framework the colli-
sion frequency is readily available. So, using the underlying
premise of the coalescence efficiency, a coalescence constraint
can be derived for the use in the Euler–Lagrange framework. Such
is the coalescence model in the current framework proposed by
Darmana et al. (2006). However, coalescence models for the PBE
do not give information regarding the location of the resulting
coalesced bubble and an assumption must be made regarding the
positioning of the newly formed bubble.

Similar to the coalescence frequency, the break-up frequency
for the PBE is given as

ΘbuðdiÞ ¼ hbuðdiÞγbuðdiÞ ð2Þ
where hbuðdiÞ is the arrival frequency of eddies interacting with a
bubble and γbuðdiÞ is the break-up efficiency. In the Euler–Lagrange
framework, the underlying premise of the break-up efficiency can
be used as a break-up constraint. To complete the break-up model,
we need a size distribution βðdiÞ of daughter bubbles formed from
the break-up of a parent bubble of size di. Also, the locations of the
resulting daughter bubbles are not given and assumptions are to
be made concerning the placement of the daughter bubbles after
the break-up event.

In the following sections, the Euler–Lagrange model and the
implemented coalescence model will be described. A break-up
model based on the constraint of a critical Weber value is
proposed along with the daughter size distribution. Subsequently
the numerical implementation of the model in the Euler–Lagrange
framework is described. And finally, we present a numerical

parameter study of the break-up model implemented in the
Euler–Lagrange framework and the effect on the resulting BSD.

2. Euler–Lagrange model

In the Euler–Lagrange model, each individual bubble is treated
in a Lagrangian manner, while the liquid phase motion is com-
puted on an Eulerian grid, taking into account the coupling or
interaction between the gas and the liquid phase. Bubble–bubble
collisions are modeled by means of a hard sphere model following
the work of Hoomans et al. (1996) and Delnoij et al. (1997, 1999).

2.1. Liquid phase hydrodynamics

The liquid phase is represented by the volume-averaged
Navier–Stokes equations, defined by the continuity and momen-
tum equations:

∂
∂t
ðαlρlÞþ∇ � αlρlu¼ 0 ð3Þ

∂
∂t
ðαlρluÞþ∇ � αlρluu¼ �αl∇P�∇ � αlτlþαlρlgþΦ ð4Þ

The presence of the bubbles is reflected by the liquid phase
volume fraction αl and the interphase momentum transfer rate
Φ due to the interface forces between the liquid and the bubbles.
The liquid phase flow is assumed to be Newtonian and a subgrid-
scale model by Vreman (2004) is employed for the turbulence. In
an earlier study Darmana et al. (2007) have compared the model
by Vreman (2004) to the model by Smagorinsky (1963). It was
decided to use by Vreman (2004) model rather than the
Smagorinsky (1963) model, as it inherently accounts for the
reduction of the energy dissipation in near-wall regions.

2.2. Bubble dynamics

The bubble motion is obtained by solving Newton0s second law
for each individual bubble. The forces are taken into account by
the net force ∑F, experienced by each individual bubble. Then the
equations of motion are written as

ρgVb
dv
dt

¼∑F;
drb
dt

¼ v ð5Þ

where v is the velocity, Vb is the volume and rb is the bubble
location of the bubble. The net force acting on each individual
bubble is assumed to consist of separate and uncoupled distribu-
tions originating from gravity, far field pressure, drag, lift, virtual
mass and wall-interaction:

∑F¼ FGþFPþFDþFLþFVMþFW ð6Þ
To close the force balance equation, correlations are needed for the
drag (Roghair et al., 2011), lift (Tomiyama et al., 2002), virtual mass
(Auton, 1987) and wall-interaction (Tomiyama et al., 1995). These
are listed in Table 1. Details on the forces and the numerical
implementation are given in the work of Darmana et al. (2006).
It should be noted that Euler–Lagrange model is limited by the
shape of the bubble, which is in this case assumed to be spherical.

3. Coalescence model

For the description of the coalescence process, three main
theories have been proposed, the kinetic collision model
(Howarth, 1964; Sovova, 1981), the film drainage model (Sagert
and Quinn, 1976; Lee et al., 1987; Prince and Blanch, 1990;
Chesters, 1991; Tsouris and Tavlarides, 1994) and the critical
velocity model (Lehr et al., 2002). In the kinetic collision or
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