

Progress in Quantum Electronics 44 (2015) 14-68

Progress in Quantum Electronics

www.elsevier.com/locate/pquantelec

Review

III-Nitride nanowire optoelectronics

Songrui Zhao^a, Hieu P.T. Nguyen^b, Md. G. Kibria^a, Zetian Mi^{a,1}

^aDepartment of Electrical and Computer Engineering, McGill University, 3480 University Street, Montreal, Québec H3A 0E9, Canada

^bDepartment of Electrical and Computer Engineering, New Jersey Institute of Technology University Heights, Newark, New Jersey 07102, USA

Abstract

Group-III nitride nanowire structures, including GaN, InN, AlN and their alloys, have been intensively studied in the past decade. Unique to this material system is that its energy bandgap can be tuned from the deep ultraviolet ($\sim 6.2 \text{ eV}$ for AlN) to the near infrared ($\sim 0.65 \text{ eV}$ for InN). In this article, we provide an overview on the recent progress made in III-nitride nanowire optoelectronic devices, including light emitting diodes, lasers, photodetectors, single photon sources, intraband devices, solar cells, and artificial photosynthesis. The present challenges and future prospects of III-nitride nanowire optoelectronic devices are also discussed.

© 2015 Elsevier Ltd. All rights reserved.

Keywords: GaN; AlN; InN; Nanowire; Optoelectronics; LED; Laser; Solar cell; Photodetector; Solar fuel; Water splitting; Solar hydrogen; Photosynthesis; Si photonics

Contents

1.	Introduction.					
2.	Growth and properties of III-nitride nanowires.					
	2.1.	Fabrica	tion of III-nitride nanowires	16		
	2.2.	Recent	advance in understanding the fundamental properties of III-nitride nanowires	18		
		2.2.1.	Polarity of III-nitride nanowires	18		
		2.2.2.	Surface charge properties of III-nitride nanowires	18		

E-mail addresses: zetian.mi@mcll.ca, zetian.mi@mcgill.ca (Z. Mi). ¹Tel.: +1 514 398 7114.

http://dx.doi.org/10.1016/j.pquantelec.2015.11.001 0079-6727/© 2015 Elsevier Ltd. All rights reserved.

		2.2.3.	Doping	20			
3.	III-Nitride nanowire LEDs						
	3.1.	III-Nitride nanowire visible LEDs					
		3.1.1.	Radial nanowire LEDs.	21			
		3.1.2.	Axial nanowire LEDs	24			
		3.1.3.	Carrier dynamics and loss mechanism of nanowire LEDs	27			
		3.1.4.	Axial core-shell nanowire LEDs with significantly enhanced carrier inject	tion			
			efficiency	30			
		3.1.5.	Phosphor-free nanowire white LEDs	32			
		3.1.6.	Color tunable nanowire LEDs	33			
	3.2.	Ultraviolet LEDs					
		3.2.1.	Polarization-doped AlGaN nanowire LEDs.	35			
		3.2.2.	AlGaN core-shell nanowire ultraviolet LEDs	37			
		3.2.3.	AlN nanowire LEDs	37			
		3.2.4.	Selective area grown AlGaN nanowire ultraviolet LEDs	38			
	3.3.	Near in	frared LEDs	38			
4.	III-Ni	III-Nitride nanowire lasers					
	4.1.	Optical	ly pumped III-nitride nanowire lasers	40			
		4.1.1.	Optically pumped Fabry-Pérot lasers	40			
		4.1.2.	Optically pumped plasmonic lasers	41			
		4.1.3.	Optically pumped photonic crystal lasers	42			
	4.2.	Electric	ally injected III-nitride nanowire lasers	44			
		4.2.1.	Electrically injected InGaN nanowire edge-emitting lasers	45			
		4.2.2.	Electrically injected nanowire ultraviolet lasers	46			
5.	III-Ni	(II-Nitride nanowire solar cells					
6.	III-Ni	itride nan	lowire photodetectors	. 50			
7.	III-Ni	itride nan	lowire single photon source	. 52			
8.	III-Ni	itride nan	lowire intraband devices	. 52			
9.	Artificial photosynthesis on III-nitride nanowire arrays						
	9.1. Photochemical water splitting using III-nitride nanostructured photocatalysts 54						
	9.2. Photoelectrochemical water splitting using III-nitride nanostructured photoelectrodes 57						
	9.3. Photoelectrochemical/photochemical CO ₂ reduction using III-nitride photoelectrodes 58						
10.	Conc	lusions a	nd future prospects	. 59			
Acknowledgment							
Ref	erence	s		. 60			

1. Introduction

The first synthesis of gallium-nitride (GaN) was realized by Maruska and Tietjen at Radio Corporation of America Laboratories (Princeton, New Jersey, USA) using a hydride vapor-phase epitaxy process on sapphire substrate in 1969 [1]. Since then, tremendous efforts have been devoted to developing GaN-based optoelectronic and electronic devices. In 2014, the Nobel Prize in Physics was awarded to Profs. Isamu Akasaki, Hiroshi Amano, and Shuji Nakamura for their invention of GaN-based blue light emitting diodes (LEDs), which enabled efficient while light sources [2–4]. Today, GaN-based materials have been widely used in LED lighting, radio-frequency (RF) electronics, power electronics, and many others. For these reasons, III-nitride

Download English Version:

https://daneshyari.com/en/article/1549119

Download Persian Version:

https://daneshyari.com/article/1549119

Daneshyari.com