

Progress in Quantum Electronics

Progress in Quantum Electronics 45-46 (2016) 3-160

www.elsevier.com/locate/pquantelec

Review

Optically pumped planar waveguide lasers: Part II: Gain media, laser systems, and applications

Christos Grivas

School of Physics and Astronomy, University of Southampton, SO17 1BJ Southampton, UK

Available online 14 January 2016

Abstract

The field of optically pumped planar waveguide lasers has seen a rapid development over the last two decades driven by the requirements of a range of applications. This sustained research effort has led to the demonstration of a large variety of miniature highly efficient laser sources by combining different gain media and resonator geometries. One of the most attractive features of waveguide lasers is the broad range of regimes that they can operate, spanning from continuous wave and single frequency through to the generation of femtosecond pulses. Furthermore, their technology has experienced considerable advances to provide increased output power levels, deriving benefits from the relative immunity from the heat generated in the gain medium during laser operation and the use of cladding-pumped architectures. This second part of the review on optically pumped planar waveguide lasers provides a snapshot of the state-of-the-art research in this field in terms of gain materials, laser system designs, and as well as a perspective on the status of their application as real devices in various research areas.

Keywords: Waveguides; Lasers and laser materials; Integrated optics devices; Laser applications; Photonic structures and

Contents

1.	Introd	action4		
2.	Material systems			
	2.1.	Activators for waveguide lasers		
		2.1.1. Rare-earth ions		

E-mail address: chr.grivas@gmail.com

© 2016 Elsevier Ltd. All rights reserved.

devices; Nanophotonics and plasmonics

		2.1.2.	Transition-metal ions	12		
		2.1.3.	Organic chromophores	12		
	2.2.	Gain me	edia	13		
		2.2.1.	Dielectric crystalline laser hosts	13		
		2.2.2.	Rare-earth-doped glasses and other amorphous oxides	33		
		2.2.3.	Rare-earth-doped ceramics	45		
		2.2.4.	Organic solid-state gain media	48		
		2.2.5.	Hybrid (organic-inorganic) gain media	57		
		2.2.6.	Inorganic semiconductors	58		
3.	Wave	guide las	er systems	67		
	3.1.	Wavegu	tide laser resonators	68		
	3.2.	Output	power scaling of diode-pumped waveguide lasers	70		
		3.2.1.	Diode-pumping configurations	70		
		3.2.2.	Methods for spatial brightness enhancement	72		
	3.3.	Narrow-	linewidth lasers	81		
	3.4.	Pulsed 1	asers	89		
		3.4.1.	Q-switched lasers	89		
		3.4.2.	Mode-locked lasers	97		
		3.4.3.	Gain-switched lasers	05		
	3.5.	Tunable	lasers	06		
4.	Applie	cations .		13		
	4.1.	Optical	communications	14		
	4.2.	Microwave signal generation				
	4.3.	Quantum memories				
	4.4.	Optical	frequency domain ranging	20		
	4.5.	All-opti	cal switching for signal processing	20		
	4.6.	Spectros	scopy	21		
	4.7.	Optical	sensor transducers	23		
	4.8.	Biologic	cal, biocompatible and bio-inspired lasers	28		
	4.9.	Lab-on-	chip integration	28		
	4.10.		oscillator power amplifier (MOPA) sources			
	4.11.	Nanowi	re waveguide lasers	30		
			nic waveguides lasers			
5.	Conclusions					
Ref	erences	3		40		

1. Introduction

Beside the tremendous improvements in planar waveguide fabrication tools, which as discussed in the first part of this review [1] have given a major boost to the field of waveguide lasers, a great deal of research efforts directed toward the optimization of their operation characteristics, which are mainly determined by the gain medium and the laser resonator. In this respect, significant benefits have been derived from innovations and breakthroughs in the designs of both the laser materials and resonators, providing a large variety of performance characteristics and ensuring high efficiency and functionality.

Download English Version:

https://daneshyari.com/en/article/1549127

Download Persian Version:

https://daneshyari.com/article/1549127

Daneshyari.com