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H I G H L I G H T S

� Two mechanisms analyzed for capil-
lary torque on rolling particle with
liquid film.

� One part of torque associated with
rearward shift of liquid bridge.

� Second part associated with asym-
metry of advancing and receding
contact angles.

� Capillary torque is found to vary as a
power-law with capillary number.

� Good agreement with experimental
data for particle rolling down inclined
slope.
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a b s t r a c t

A theoretical analysis was developed for the capillary torque acting on a spherical particle rolling on a flat
surface in the presence of a thin liquid film. The capillary number (the ratio of viscous force to surface
tension force) is assumed to be sufficiently small that the liquid bridge has a circular cross-section. The
theory identifies two mechanisms for capillary torque. The first mechanism results from the rearward
shift of the liquid bridge in the presence of particle rolling, which causes the line of action of the pressure
force within the liquid bridge to be located behind the particle centroid, inducing a torque that resists
particle rolling. The second mechanism results from the contact angle asymmetry on the advancing and
receding sides of the rolling particle, which leads to a net torque on the particle arising from the
tangential component of the surface tension force. Estimates for these two types of capillary torque are
obtained using experimental data, and correlations for both torques are obtained in the form of power-
law fits as functions of the capillary number. When combined with a standard expression for viscous
torque on a rolling particle, the capillary torque expressions are found to yield predictions for particle
terminal velocity that are in good agreement with experimental data for a particle rolling down an
inclined surface.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

When granular matter is exposed to moisture, even in very
small amounts, such as through condensation from atmospheric
humidity, the individual particles become surrounded by a thin

liquid film. When these particles come into contact with each
other or with a surrounding enclosure, the surrounding films of
the contacting particles form a liquid bridge which gives rise to
capillary forces that pull the particles together (often called the
‘liquid bridge force’). Capillary forces often have a detrimental
effect in granular flow applications since they act to promote
caking between particles and to resist the free flow of particles
under gravitational or other driving forces. Studies of the effect of
moisture have been reported for granular flows of different types,
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including avalanche flows and granular piles (Bocquet et al., 2002;
Halsey and Levine, 1998; Tegzes et al., 2002, 2003; Hornbaker
et al., 1997; Nowak et al., 2005; Soria-Hoyo et al., 2009; Mason
et al., 1999), motion of particles in a rotating drum (Liu et al., 2011,
2013; Brewster et al., 2009), segregation and mixing of particles of
different sizes (Radl et al., 2010; Samadani and Kudrolli, 2000;
Hsiau et al., 2008; Li and McCarthy, 2003), particles in a granular
shear flow (Yang and Hsiau, 2006), and compaction of granular
media (Fiscina et al., 2010).

The normal capillary force between particles, acting in a
direction parallel to the line connecting the particle centroids,
has been the subject of a large number of previous experimental
and theoretical studies. The early literature on this topic primarily
considered liquid bridge force and rupture criteria for static
particles (Hotta et al., 1974; Mehrotra and Sastry, 1980; Lian
et al., 1993; Willett et al., 2000). Models for normal force that
account for the viscous force acting between particles with non-
zero relative motion were developed by Ennis et al. (1990) and
Matthewson (1988). A detailed experimental study by Pitois et al.
(2000, 2001) compared several existing models for the liquid
bridge force and rupture criteria to experimental data for both
static and moving particles.

It was noted by Bico et al. (2009) that the thin liquid film
surrounding a particle also has an effect on a particle rolling along
a plane wall, giving rise to a capillary torque that resists the rolling
motion. This capillary torque arises from the asymmetry of the
liquid bridge that develops as a result of the rolling motion of the
particle (Fig. 1). Bico et al. found that the shape of the liquid bridge
varies as a function of capillary number Ca¼ μjV j=s, where μ is the
liquid viscosity, s is the liquid–gas surface tension, and V is the
particle velocity along the surface. For Cao1, the liquid bridge has
an approximately circular shape, whereas for Ca41 the liquid
bridge forms a cusp with a trailing wake. An experimental study
was reported by Schade and Marshall (2011) that used transparent
lubricants with different viscosity values to examine a 13 mm
diameter sphere rolling in a fixed position on a translated flat
surface coated with a thin liquid film to obtain data for the change
in contact angle and contact point location as functions of capillary
number and Reynolds number.

A number of different effects act in concert to generate the
torque on a rolling particle in the presence of a thin liquid film,
including surface tension forces, pressure reduction within the
liquid bridge, and viscous friction. This paper develops a theore-
tical expression for the capillary torque, which combines the first
two effects listed above. After adding the viscous torque on a
rolling particle to the capillary torque, an equation is obtained for
the velocity of a particle rolling down an inclined planar surface at
low values of capillary number. The results are compared to
experimental data of Bico et al. (2009). The theoretical model for

the normal force on a particle in the presence of a thin liquid film
is reviewed in Section 2. Approximations made in the normal force
theory form the foundation of the capillary torque theory dis-
cussed in Section 3. Section 4 gives predictions for velocity of a
particle rolling down a slope in the presence of both viscous and
capillary torque. Conclusions are given in Section 5.

2. Normal capillary force

We consider a spherical particle with radius rp that is con-
nected to a plane wall by an axisymmetric liquid bridge, with
separation distance h(t) between the particle and the wall, as
shown in Fig. 2a. In terms of a cylindrical polar coordinate system
(r,z), the radius of curvature of the liquid–gas interface in the r–z
plane is denoted by ρ1 and the radial position of the liquid bridge
at the mid-plane between the sphere and the planar surface is ρ2.
The solid–liquid contact angle θ and the half-filling angle f are
defined as indicated in Fig. 2a.

In a static condition, an equal and opposite force acts on the
particle and the wall which arises both from the component of the
surface tension force oriented normal to the wall and from the
pressure reduction within the liquid bridge that occurs as a result
of the interface curvature. The sum of these two effects gives rise
to an attractive force Fcap referred to as the capillary force, acting
along the wall unit normal. The Young–Laplace formula gives the
pressure reduction across the interface as

ΔpI ¼ pliq�pgas ¼sðρ�1
1 �ρ�1

2 Þ; ð1Þ

where s is the liquid–gas surface tension and the negative sign in
(1) results from the fact that the center of the tangent circles
corresponding to ρ1 and ρ2 are on opposite sides of the interface.
An approximate solution for the capillary force is obtained from
the "gorge approximation" (Hotta et al., 1974; Lian et al., 1993), in
which the force on the sphere is written in terms of the pressure
force and surface tension force exerted on the midplane of the
liquid bridge as

Fcap ¼ 2πsρ2þπρ22ΔpI ¼ πsρ2 1þρ2
ρ1

� �
; ð2Þ

where the last expression is obtained using (1).
In the case where the volume of the liquid bridge is small, the

radial location r¼ b of the liquid–solid–gas triple point satisfies
b⪡rp, and as a consequence we can conclude ρ2⪡rp and ϕ⪡1. Since
for small fill angles, elementary geometry can be used to show that
the ratio of the radii of curvature satisfies ρ1=ρ2 ¼ OðϕÞ, it follows
that for small liquid volumes the force on the particle arising from
the pressure reduction dominates the surface tension force, and
the expression (2) for the capillary force reduces to leading order
to

Fcap ¼ πsρ22=ρ1 ð3Þ

The radius ρ2 can be approximated for small liquid volumes as
ρ2ffibffið2rpsÞ1=2, where b is the radial location of the liquid–gas–
solid triple point on the sphere and s is the height of the triple
point above the bottom of the sphere (Fig. 2b). A second geome-
trical consequence of the assumption of small fill angle is the
approximation 2ρ1 cos θffisþh for the radius ρ1. Substituting
these two approximations into (3) yields the capillary force as

Fcap ¼ 4π rps cos θ 1þh
s

� ��1

ð4Þ

which is the same as the expression derived by Maugis (1987)
using a thermodynamic approach related to crack propagation
theory.Fig. 1. Schematic diagram of a particle rolling on a flat surface.
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