

Available online at www.sciencedirect.com

SOLAR Energy

Solar Energy 133 (2016) 119-140

www.elsevier.com/locate/solener

Thermal–electrical model for energy estimation of a water cooled photovoltaic module

Filippo Spertino^{a,*}, Antonio D'Angola^b, Diana Enescu^c, Paolo Di Leo^a, Giovanni Vincenzo Fracastoro^a, Renato Zaffina^b

^a Politecnico di Torino, Energy Department, Corso Duca degli Abruzzi 24, 10129 Torino, Italy

^b Università degli Studi della Basilicata, Scuola di Ingegneria, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy

^c Valahia University of Targoviste, Department of Electronics, Telecommunications and Energy, Targoviste, Dambovita, Romania

Received 8 January 2016; received in revised form 18 March 2016; accepted 22 March 2016 Available online 20 April 2016

Communicated by: Associate Editor Yogi Goswami

Abstract

In this paper a theoretical model, which integrates both thermal and electrical aspects, has been developed in order to analyze an unglazed Photovoltaic (PV) module with water cooling. The coolant flow induces higher conversion efficiency due to lower temperatures. However, a non-uniform temperature field of solar cells arises with a consequent impact on their electrical parameters and the corresponding power losses are investigated. Outdoor experimental tests have been carried out to indirectly estimate the temperature of the solar cells at known conditions of irradiance and ambient temperature and to characterize the PV module at Standard Test Conditions (STC). In the outdoor characterization of commercial PV modules without cooling, the current–voltage curves are corrected to STC with a standard procedure, for comparing them with the manufacturer datasheets. In this paper, it is experimentally verified that the STC can be reasonably reproduced in the field in clear sky conditions thanks to a suitable cooling. Finally, by means of daily simulations, the performance improvement with variable coolant flow rates, for two reference sites at different climates, is investigated in details.

© 2016 Elsevier Ltd. All rights reserved.

Keywords: Photovoltaic modules; Thermal-electrical model; Water cooling; Experimental tests

1. Introduction

Only a fraction of solar radiation is converted by Photovoltaic (PV) systems into electricity, while a large part of the thermal energy is wasted and contributes to the increase of solar (or PV) cell temperature. As a consequence, the electrical efficiency drops (Platz et al., 1997; Kalogirou and Tripanagnostopoulos, 2006; Chow, 2010; Spertino et al., 2014) because the performance of solar cells depends on their ambient conditions, among which the cell operating temperature plays a major role. In general, the PV efficiency loss with temperature depends on the type of cell. A linear dependence of the electrical performance on the operating temperature has been indicated in various references (Kawamura et al., 1997; Omubo-Pepple et al., 2009; Suresh et al., 2013). An indicative value reported in SEI (2004) for the reduction of crystalline silicon (c-Si) efficiency with unitary temperature increment of the solar cell

 ^{*} Corresponding author. Tel.: +39 011 090 7120; fax: +39 011 090 7199. *E-mail addresses:* filippo.spertino@polito.it (F. Spertino), antonio.
dangola@unibas.it (A. D'Angola), diana.enescu@valahia.ro (D. Enescu), paolo.dileo@polito.it (P. Di Leo), giovanni.fracastoro@polito.it (G.V. Fracastoro), renzaff@gmail.com (R. Zaffina).

Nomenclature

		β	tilt angle of PV module (°)
Acrony	ms	β_{Uoc}	open-circuit voltage coefficient (V $^{\circ}C^{-1}$)
AM	Air Mass	γ000 γ _Ρ	maximum power coefficient ($\%^{\circ}C^{-1}$)
ARC	Anti Reflective Coating	δ	power increase (%)
CHP	Combined Heat and Power	3	polycarbonate emissivity (–)
DC	direct current	η	efficiency (–)
MPP	Maximum Power Point	ĸ	Boltzmann constant $(1.3806503 \cdot 10^{-23} \text{ J K}^{-1})$
NOCT	Nominal Operating Cell Temperature	λ	wavelength (um)
PC	polycarbonate	u	dynamic viscosity of water (kg s ^{-1} m ^{-1})
PCM	phase change material	v	kinematic viscosity of water $(m^2 s^{-1})$
PV	Photovoltaic	Ĕ	real power gain (%)
PV/T	Photovoltaic–Thermal	э 0	density (kg m ^{-3})
SAHP	Solar Assisted Heat Pump	σ	Stefan-Boltzmann constant $(5.67 \cdot 10^{-8} \text{ W m}^{-2} \text{ K}^{-4})$
STC	Standard Test Conditions	τ	transmissivity (_)
TE	thermoelectric	0	constant depending on the cell material
TPU	thermonlastic polyurethane	Φ	solar spectral emissive power (W m^{-2} μm^{-1})
110	thermophistic polytrethane	τ γ	power loss (%)
Symbol	le.	λ	constant depending on the cell material
Δ	matrix	Ψ	constant depending on the cen material
A 1	heat transfer surface (m^2)	Supars	avinta
А Ь	heat transfer sufface (iii)	T	transposition
U o	vector specific heat of water $(\mathbf{I} \log^{-1} \mathbf{V}^{-1})$	I ico	isothermal
C J	specific field of water (J kg K)	180	isotilerinar
a E	nydraulic diameter of water nows passage (m)	C. h.	·
E _G	energy gap (ev)	Subscri	<i>pis</i>
E_{G0}	energy gap at 0 K (ev) $(2 - 2)$	a	ambient
G	solar irradiance (W m ⁻²)	alv	alveolar
h	surface heat transfer coefficient (W m 2 K 2)	ag	air–gap
1	current (A)	C	cell
k	thermal conductivity (W m ⁻¹ K ⁻¹)	c .	cross-sectional
$K_{\rm ph}$	spectral-response parameter	cond	conductive
т	diode ideality factor	conv	convective
n	step counter	D	diode
р	perimeter (m)	el	electrical
Р	electric power (W)	G	gap
q	electron charge $(1.60217646 \cdot 10^{-19} \text{ C})$	Ι	ideal
\dot{q}	heat flux (W m ⁻²)	in	input
R	module electrical resistance (Ω)	inw	inlet water
S	thickness (m)	max	maximum
S	surface (m ²)	mpp	at maximum power
SR	spectral response (A W^{-1})	NC	without coolant
Т	temperature (K)	oc	open-circuit
$T_{\rm skv}$	sky temperature (K)	pc	polycarbonate
U	overall heat transfer coefficient (W m ^{-2} K ^{-1})	ph	photo-generated
<i>i</i> v	volume flow rate of water $(1 h^{-1})$	PVm	PV module
V	voltage (V)	R	real
<i>x</i> . <i>v</i> . <i>z</i>	space variables	rad	radiative
x	vector for linear system solution	ref	reference value, at reference temperature
XY	height and width of the alveolar	S	surface
, .	polycarbonate layer (m)	ser	series
W2	water velocity (m s^{-1})	SC	short-circuit
" Z	space derivative of the water temperature $(K \text{ m}^{-1})$	sh	shunt
-	space derivative of the water temperature (ix iii)	t	thermal
Groot	symbols	u W	water
oreen s	absorptivity (_)	0	reverse saturation
u Mr	short-circuit current coefficient ($\Lambda \circ C^{-1}$)	U	
ω_{Isc}	short-cheun current coefficient (A.C.)		

Download English Version:

https://daneshyari.com/en/article/1549338

Download Persian Version:

https://daneshyari.com/article/1549338

Daneshyari.com