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Abstract

We propose an ultra-short-term dynamic interval predictor (DIP) of solar irradiance. Our DIP relies on experimentally observed cor-
relations between the derivative of the solar irradiance and the forecast error in the next time-step. The main originalities of this DIP are
(i) its independence from the method used for the point forecast of solar irradiance, (ii) its independence from the error distribution of the
point-forecast method. We compare the DIP with the most common prediction interval methods. By using significant data set covering
several months of experimental observations, we have observed higher accuracy and lower width of the prediction intervals of the pro-
posed DIP.
� 2015 Elsevier Ltd. All rights reserved.
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1. Introduction

Today’s trend of vast connections of distributed genera-
tion in low- and medium-voltage power networks accounts
for quality-of-supply of electrical distribution grids in a
way that, in several countries, operational constraints are
already attained. Additionally, it is necessary that their
active contribution be quantified in real-time and, eventu-
ally, controlled. In this respect, one of the main concerns
of distribution network operators refers to the definition
of optimal control-schemes in which the high volatility of
renewable-energy resources (RERs) can be accounted for.
The choice of the forecast time window is extremely impor-
tant and it is highly correlated to the design of real-time
control of RERs in order to provide grid primary-
ancillary services (e.g., Song et al., 2013; Vrakopoulou

et al., 2013; Heniche et al., 2013). Several control strategies
have been proposed (database model in Song et al. (2013),
stochastic optimization in Vrakopoulou et al. (2013), mul-
tiagents in Heniche et al. (2013)) to define dedicated real-
time energy-management systems and, in some cases, the
concept of real-time control is associated with time dynam-
ics below 1 s (Heniche et al., 2013).

More specifically, the authors of Bernstein et al. (2015),
Reyes Chamorro et al. (2015) recently proposed a solution
to the challenging problem of controlling a distribution
network in real-time by using explicit power setpoints. In
this framework the resources can advertise their current
internal needs and power availability by simple messages
in order to enable a grid controller to maintain the state
of the system within secure limits. The framework, called
Commelec, is designed to be robust (i.e., it avoids the prob-
lems inherently posed by software controllers) and scalable
(i.e., it easily adapts to grids of any size and complexity). It
is based on software agents, that are responsible for
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resources/subsystems (Resource Agents) or entire grids
(Grid Agents) and they communicate using a simple yet
powerful protocol with a refresh rate of around 100 ms.
A detailed description of the proposed framework is given
in Section 2.

In this context, the real-time control can be considerably
improved if the Grid Agents are able to bound the uncer-
tainty of power injections, due to stochastic sources, at a
horizon of one or a few control cycles (fraction of a sec-
ond). For systems with photovoltaic (PV) panels, it is
worth observing that the solar irradiance has an extreme
volatility in time scales below a second.1 It is thus interest-
ing to find ultra-short-term forecast bounds for the solar
irradiance of PV panels, and such is our goal in this paper.

The available literature on prediction intervals for PV
energy-conversion systems is characterized by the following
four main limitations (Singh et al., 2013; Kardakos et al.,
2013; Trapero et al., 2014; Lorenz et al., 2009; Marquez
and Coimbra, 2011; Bacher et al., 2009; Segura and
Vercher, 2001): (i) absence of methods proposing prediction
intervals targeting the time scale of seconds or sub-seconds;
(ii) absence of methods proposing prediction intervals able
to track the highly-dynamic volatility of the solar irradiance;
(iii) absence of methods able to account for distributions of
the point-forecast errors other than Gaussian; (iv) strong
dependency of the prediction interval with the specific
method used for the point forecast computation. To the best
of our knowledge, the only works that are independent of the
point-forecast method are (Wan et al., 2014; Pinson and
Tastu, 2014). Machine-learning methods capable of quanti-
fying uncertainty bounds of point forecasts are presented
in Wan et al. (2014), Pinson and Tastu (2014).

In this paper we propose a model-free prediction inter-
val of the solar irradiance. The method, henceforth called
the dynamic interval predictor (DIP), is able to estimate
the magnitude of the prediction intervals by assessing the
correlations between the measurements of the derivative
of solar irradiance and the point-forecast error in the next
forecasting time-step.

With respect to the above-listed drawbacks of tradi-
tional prediction intervals, the DIP exhibits the following
characteristics: (i) the prediction intervals are computed
within a time scale ranging from 250 ms up to 750 ms;
(ii) it does not depend directly on the method used for
the point forecast; (iii) it is able to track high dynamics
of the solar irradiance and (iv) it is capable of self-
improving its performances during its use because it is able
to correct the magnitude of the prediction intervals for
future computations.

The paper is structured as follows. The Commelec
framework, for which the proposed DPI has been
deployed, is described in Section 2. A brief summary of
the different existing methods for prediction intervals is

reported in Section 3. In order to highlight the need of
ultra-short-term forecast, experimental evidences of sub-
second solar dynamics are illustrated in Section 4. In the
same section, by using experimental data, the existing cor-
relations between the derivative of solar irradiance and the
point-forecast error in the next forecasting time-step have
been analyzed. The proposed DIP is described in detail in
Section 5. The robustness of the DIP, and its comparison
with the other commonly used prediction intervals meth-
ods, are illustrated in Section 6. In particular, since the
available literature on point forecast computation contains
a considerable amount of works based on heuristic tech-
nique (Mellit and Pavan, 2010; Mellit and Kalogirou,
2008; Sfetsos and Coonick, 2000; Behrang et al., 2010),
Section 6 also assesses the performances of the proposed
DPI coupled with an ANFIS (adaptive neuro-fuzzy infer-
ence system) point forecast model. The main findings of
the work and its applicability are summarized in Section 7.

2. The Commelec control framework

In the Commelec framework, a software agent is associ-
ated with a resource (henceforth called ‘‘Resource Agent”,
RA), or an entire system, including a grid and/or a number
of devices (henceforth called ‘‘Grid Agent”, GA). There is a
well-defined relationship between the agents, which follows
from the tree structure of the distribution networks. An
example of agents relationship is shown in Fig. 1 where
GA is in charge of controlling RAs A1, . . ., AN, who are
responsible for subsystems S1, . . ., SN.

Each Resource Agent advertises its internal state to its
Grid Agent using the following three elements. (1) The
PQ profile A is the region in the (P,Q) plane (for active
and reactive power) that the subsystem under the control
of this Resource Agent can deploy. (2) The virtual cost C

is a function, that defined for every (P,Q) in the PQ profile,
returns a number C(P,Q) interpreted as the willingness of
this subsystem to apply a requested power setpoint (P,Q).
It is virtual in the sense that it is not directly related to a
monetary value. (3) The belief function BF returns the
set of all possible (actual) setpoints so that this subsytem
might in reality implement, when instructed to imple-
ment a target setpoint. This accounts for the uncertainty
in a subsystem operation. In particular, highly controllable
subsystems are expected to have ideal beliefs, namely

Fig. 1. A general scheme for showing Commelec agents interactions.

1 An experimental quantification of the sub-second PV volatility is given
in Section 3.
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