
Analytical solutions and moment analysis of general rate model
for linear liquid chromatography

Shamsul Qamar a,b,n, Javeria Nawaz Abbasi b, Shumaila Javeed a,b,
Andreas Seidel-Morgenstern a

a Max Planck Institute for Dynamics of Complex Technical Systems Magdeburg, Germany
b Department of Mathematics, COMSATS Institute of Information Technology, Park Road, Chak Shahzad, Islamabad, Pakistan

H I G H L I G H T S

� The linear general rate model (GRM) is analyzed for different boundary conditions.
� The first four moments of the model are analytically and numerically calculated.
� Relationships are derived to match moments of GRM and the lumped kinetic model (LKM).
� These relations can be used to estimate parameters of LKM from GRM parameters.
� The finite volume scheme is applied to validate the analytical results.
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a b s t r a c t

The general rate model (GRM) is considered to be a comprehensive and reliable mathematical model for
describing the separation and mass transfer processes of solutes in chromatographic columns. However,
the numerical solution of model equations is complicated and time consuming. This paper presents
analytical solutions of the GRM for linear adsorption isotherms and different sets of boundary conditions
at the column inlet and outlet. The analytical solutions are obtained by means of the Laplace
transformation. Numerical Laplace inversion is used to transform back the solution in the time domain
because analytical inversion cannot be obtained. The first four temporal moments are derived
analytically using the Laplace domain solutions. The moments of GRM are utilized to analyze the
retention times, band broadenings, front asymmetries and kurtosis of the elution profiles. Relationships
are derived among the kinetic parameters to match the first four moments of GRM and the simpler
lumped kinetic model (LKM). For validation, the analytical solutions are compared with numerical
solutions of a second order finite volume scheme. Good agreements in the results verify the correctness
of analytical solutions and the accuracy of the numerical scheme.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Column liquid chromatography is one of the most versatile
separation techniques. It is widely used for analysis and purifica-
tion in several industries aiming to produce pharmaceuticals, food,
and fine chemicals. The concept is successfully applied to perform
numerous difficult separation processes, for instance the separa-
tion of enantiomers and the isolation of specific proteins from
fermentation broths. In the column liquid chromatography, a
mobile phase percolates through a bed of fixed porous particles,

carrying the mixture components which interact differently with
the stationary phase. Components interacting strongly with the
particles will be transported (elute) slowly along the column as
compared to the components with weaker interactions. Therefore,
each component will form a concentration band profile moving
with a specific velocity in the column. These velocity differences
make possible, for long enough columns, to collect pure fractions
of components at the outlet of the column.

Mathematical modeling of chromatographic processes is useful
for understanding and analyzing dynamic composition fronts in
chromatographic columns without extensive experiments. Differ-
ent mathematical models with different degrees of complexity
describing the mass transfer and partition processes are available
in the literature. The most important of these models are the
general rate model (GRM), the lumped kinetic model (LKM), the
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equilibrium-dispersive model (EDM), and the ideal model of
chromatography, see e.g. Guiochon (2002), Guiochon and Lin
(2003), Guiochon et al. (2006), Ruthven (1984), and Carta (1988).

The EDM assumes that the mass transfer is of infinite rate. The
LKM incorporates with the rate of variation of the local concen-
tration of solute in the stationary phase and local deviation from
equilibrium concentrations. The analytical solutions and moment
analysis of these models are already presented in detail in our
previous publications (Javeed et al., 2013; Qamar et al., 2013). In
this paper, the analysis of GRM is our main concern.

The GRM is considered to be a very comprehensive model and
has the potential to achieve an accurate description of chromato-
graphic profiles. It incorporates several important factors of the
mass transfer process in the column, such as the axial dispersion,
external mass transfer resistance, pore diffusion and surface
diffusion.

In this work, the analytical solutions of GRM are obtained for
different sets of boundary conditions considering a single compo-
nent fluid. The model equations are solved by using the Laplace
transformation. Moment analysis has been comprehensively
discussed in the literature, see for example Kubin (1965a,b),
Kucera (1965), Schneider and Smith (1968), Suzuki (1973), Wolff
et al. (1980a,b), Ruthven (1984), Lenhoff (1987), Antos et al. (2003),
Guiochon et al. (2006), Miyabe and Guiochon (2000, 2003),
Miyabe (2007, 2009) and Javeed et al. (2013). In these partly
classical papers analytical expressions have been generated for
specific chromatographic models and boundary conditions. The
analysis typically covered just the most important first and second
moments, i.e. retention times and band broadening. In a few
studies also the third moment, which describes peak and front
asymmetries, was derived and evaluated. In the present paper we
address several aspects that have not been treated in detail up to
now. We will derive and compare also the fourth moment, i.e. the
kurtosis or flatness. Using low-noise detectors and complete
capture of the responses this moment appears to be still experi-
mentally accessible. Since the influence of the boundary condi-
tions is often not discussed in sufficient depth, we will further
compare the moment expressions for Danckwerts and Dirichlet
conditions considering both rectangular pulses and steps as inlet
profiles. In order to compare quantitatively the first four moments
of GRM and LKM are derived. With this analysis it is intended to
elucidate the connections between the specific kinetic parameters,
including for the first time the results for the fourth moments.
Finally, going beyond previous studies, we will provide a compar-
ison of the analytically derived moments with moments calculated
independently by integrating numerically calculated effluent pro-
files. For this advanced high resolution methods are applied
(Javeed et al., 2011a, 2011b), which are capable to treat also the
more general case of nonlinear equilibria.

The structure of the paper is as follows: The GRM is described
in Section 2. Section 3 presents the derivation of analytical
solutions and moments of the GRM. Numerical test problems are
presented in Section 4. Concluding remarks are given in Section 5.

2. The general rate model (GRM)

The GRM considers, besides functions for the distribution
equilibria, several contributions of mass transfer processes occur-
ring in chromatography which cause band broadening. More
specifically, axial dispersion, mass transfer between mobile and
stationary phases and intraparticle pore diffusion are included in
the mass balance equations. Limiting finite rates of adsorption–
desorption is sometimes also included but not considered below.
Thus, the GRM contains two mass balances for each solute, one for
the column and one for the particles of stationary phase.

The mass balance for a single solute component percolating
through a column filled with spherical particles of radius Rp is
given as

∂c
∂t

þu
∂c
∂z

¼DL
∂2c
∂z2

� 3
Rp

Fkextðc�cpðr¼ RpÞÞ: ð1Þ

In the above equation, c and cp are the concentrations of a solute in
the bulk of the fluid and in particle pores, respectively. The phase
ratio F is defined as F ¼ ð1�εÞ=ε, where ε is the external porosity.
Moreover, u is the interstitial velocity, DL represents the axial
dispersion coefficient, kext is the external mass transfer coefficient,
and t and z denote the time and axial coordinate of the column,
respectively. In addition, r is the radial coordinate of spherical
particles of radius Rp.

The mass balance equation for the solute in the stationary
phase can be expressed assuming two mechanisms of intraparticle
transport:
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where qn is the local concentration of solute in the stationary
phase, εp is the internal porosity, Dp is the pore diffusivity, and
Ds is the surface diffusivity.

Eqs. (1) and (2) are connected at r¼ Rp via the following
expression which quantifies the temporal change of the average
loading of the particles:

εpDp
∂cp
∂r

þð1�εpÞDs
∂q
∂r

� �
r ¼ Rp

¼ kextðc�cpjr ¼ Rp
Þ: ð3Þ

The initial condition of Eq. (1) for an initially regenerated column
is given as

cð0; zÞ ¼ 0 ð0ozoLÞ; ð4Þ
and initial conditions of Eq. (2) considering empty particles are
given as

qnð0; z; rÞ ¼ 0; cpð0; z; rÞ ¼ 0: ð5Þ
Because rapid adsorption or desorption rates are assumed, the
concentrations of solute in the pores and that in the stationary
phase are in the state of equilibrium.

Only linear adsorption isotherms are considered in this work:

qn ¼ acp: ð6Þ
By using Eq. (6), the right hand side term in the square brackets of
Eq. (2) can be simplified as

εpDp
∂cp
∂r

þð1�εpÞDs
∂qn

∂r
¼Deff

∂cp
∂r

; ð7Þ

where

Deff ¼ εpDpþð1�εpÞDsa: ð8Þ
Thus, in linear form, Eq. (2) can be rewritten as

an∂cp
∂t

¼Deff

r2
∂
∂r

r2
∂cp
∂r

� �
; ð9Þ

with

an ¼ εpþð1�εpÞa: ð10Þ
Similarly, Eq. (3) simplifies to

Deff
∂cp
∂t r ¼ Rp ¼ kextðc�cpjr ¼ Rp

Þ:
��� ð11Þ

Moreover, appropriate inlet and outlet boundary conditions (BCs)
are required for Eqs. (1) and (2).

The following two types of boundary conditions are considered
for Eq. (1).

Boundary conditions of type I: Robin (or Danckwerts) type inlet
BCs. In this case, the Robin type boundary condition, known in
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