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H I G H L I G H T S

� Derivation of a depth-dependent porosity relation below a fluid–porous interface.
� Assumption is based on spheres, randomly packed as a porous medium.
� Validation of relation by non-invasive laser method and numerical simulations.
� Comparison of the results with literature data on biofilm porosity.
� Showing effect of variable porosity on solute concentration profile in a biofilm.
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a b s t r a c t

The correct quantification of porosity is essential in all studies pertaining to porous media. A host of
existing works employs a constant, bulk value for porosity, even when the porous sample is attached to a
free fluid. Since the volume fraction of the solid matrix near the interface region differs from that in the
core, the porosity undergoes a spatial variation. Here we present a novel relation for the porosity as a
function of depth below the interface, using the concept of surface roughness applied on the classical
definition of open porosity. This relation has been verified by computational modeling as well as non-
invasive laser experiments. It has been shown that this depth-dependent porosity relation applies also to
a non-granular porous layer such as a biofilm.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Porosity has been known to be the most significant property
describing a porous medium. Moreover, its correct quantification
is essential for flow, heat and mass transfer parameters such as
permeability, tortuosity, thermal conductivity and diffusion coefficient.

In a variety of situations, a porous medium has a boundary with
its non-porous surrounding such as a free fluid. Examples include
microbial mats (Wieland et al., 2001), biofilms (Lewandowski,
2000), Rayleigh–Benard convection in fluid permeating a porous
medium (Howle et al., 1993), monochromatic surface waves across
fluid–porous interfaces (Albers, 2006), air-grain flows in granular

media (Sandnes et al., 2010). In such cases, the porosity undergoes
a spatial decrease due to increase of solid matrix density or
packing density with depth. This fact has been already pointed
out in previous studies (Ochoa-Tapia and Whitaker, 1995; Goyeau
et al., 2003; Goharzadeh et al., 2005), however, a functional
relationship for the depth-dependent porosity at fluid–porous
interfaces has remained illusive.

Here we present a novel porosity–depth relation by applying
the classical definition of open porosity to each thin slice of the
porous layer below the fluid–porous interface. This relation is
found to be applicable to granular as well as naturally growing
porous layers.

To validate this relation, rigorous experimental and numerical
investigations were performed. The experiments were composed
of non-invasive planar laser induced fluorescence (PLIF) technique
to visualize void and solid fractions below the interface. Solid
matrix was considered to be mono-sized spherical glass beads.
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In the numerical approach, a free surface of randomly packed solid
spheres was first generated. The porous layer underneath the free
surface was then split into thin slices which were used to extract
void and solid matrix fractions. Both experimental and numerical
results agreed well with the porosity–depth relation presented.

Finally, the significance of inclusion of a depth-dependent
porosity has been demonstrated on the example of oxygen
concentration profile predicted for a biofilm.

2. Development of a new porosity–depth relation

We consider a cubic container of volume L3 filled with a
random packing of Nsmall solid spheres of diameter d having an
interface with the overlaying fluid layer. Following previous
studies (Beavers and Joseph, 1967; Neale and Nader, 1974;
Goharzadeh et al., 2005) the position of the nominal fluid–porous
interface, y¼0, is defined as the location of the horizontal tangent
to the perimeter of the uppermost sphere (Fig. 1). We introduce a
transition layer with the thickness δ understood as the layer
within which the porosity falls from unity at the fluid–porous
interface to its bulk value in the porous core. To calculate the
depth-dependent porosity, the transition layer is divided into an
ensemble of M subsequent tiny horizontal slices of thickness,
Δ¼ L=N, occupied partially by fluid and partially by solid segments
(top image in Fig. 1). The open porosity of each tiny horizontal slice
can be given by

φm ¼ 1� 1

L2Δ
∑
p

i ¼ 1
Vi ð1Þ

where Vi is the volume of each sphere segment and p is the
total number of segments in a given slice m. The sum in
Eq. (1) generally represents a trapezoidal volume similar to the
so-called Tower of Hanoi (Buneman and Levy, 1980; Wolfram,
2011). It can be shown (see results section) that in a random
packing of large number of spheres, the thickness Δ corresponds to
the vertical distance which separates any two vertically closest
spheres. With other words at a given depth there would exist only
one sphere and the trapezoidal volume fades to the volume of a
spherical cap V(y) (right image in Fig. 1). Consequently, Eq. (1)
converts to

φðyÞ ¼ 1�N

L3
VðyÞ ð2Þ

with

VðyÞ ¼ πd3
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: ð3Þ

We recall that the volume fraction of solid spheres to the
container volume can be given by

1�φb ¼
N
πd3

6
L3

: ð4Þ

Hence, upon substitution of Eq. (3) in Eq. (2) and elimination of
N=L3 from Eq. (2) using Eq. (4), one obtains the depth-dependent
porosity relation as

φðynÞ ¼ 1�ð1�φbÞ 3yn2�2yn3
h i

: ð5Þ

Here φb represents bulk porosity and yn ¼ y=d. The term 1�φb

provides a universal constant which ranges from 0.609 to 0.641 for
poured and close random packing (Dullien, 1992). The above
relation has been derived under the premise that the solid spheres
are randomly packed, provide point of contact with their neigh-
boring ones, generate interconnected voids and are heavier than
the saturating fluid.

3. Numerical and experimental methods

3.1. Numerical determination of porosity variation

To generate a random packing of N mono-sized spherical solid
beads in a given cubic box of size L, a standard algorithm
developed in Princeton University has been utilized (Skoge et al.,
2006; Princeton, 2011). The Princeton code has been modified by
us to construct a porous layer with a free interface with the fluid
on top. To do so, we numerically remove the beads from the top of
the box until we reach those beads with their centers below y¼0
as shown in Fig. 2.

The constructed porous layer has the thickness L=2þd=2.
Knowing the exact coordinates of the solid beads and voids, the
porosity of each horizontal cross-sectional stripe of thickness Δ –

representing the porosity at a given depth – is given by
ϕi ¼ Avoid � Δ=Atotal � Δ. Hence, at any given depth the porosity can
be extracted from the void to total area fraction. The repetition of
this procedure for the entire whole porous layer leads to a
numerically driven depth-dependent porosity relation.

Fig. 1. A porous layer of solid spheres having a free interface with the upper fluid layer (bottom left image); any, sufficiently tiny, horizontal slice of thickness Δ (top image)
will be occupied partially by solid and partially by void or fluid. Porosity at any depth is related to the volume of the segments confined within Δ constructing a spherical cap
(bottom right image).
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