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Abstract

A smart, real-time reforecast method is applied to the intra-hour prediction of power generated by a 48 MWe photovoltaic (PV) plant.
This reforecasting method is developed based on artificial neural network (ANN) optimization schemes and is employed to improve the
performance of three baseline prediction models: (1) a physical deterministic model based on cloud tracking techniques; (2) an auto-
regressive moving average (ARMA) model; and (3) a k-th Nearest Neighbor (kKNN) model. Using the measured power data from the
PV plant, the performance of all forecasts is assessed in terms of common error statistics (mean bias, mean absolute error and root mean
square error) and forecast skill over the reference persistence model. With the reforecasting method, the forecast skills of the three base-
line models are significantly increased for time horizons of 5, 10, and 15 min. This study demonstrates the effectiveness of the optimized
reforecasting method in reducing learnable errors produced by a diverse set of forecast methodologies.

© 2014 Elsevier Ltd. All rights reserved.
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1. Introduction

The importance of short-term solar forecasting systems
for renewable integration has been discussed at length else-
where (Lew et al., 2010; Inman et al., 2013). The variable
nature of renewable power generation is an obstacle for
achieving higher level of solar penetration into the power
grid. Uncertainty in solar power generation caused by
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atmospheric processes adversely affects the stability of
power grid and increases the capital and operational cost
of reserves and ancillary generators. Smart generation con-
trol based on accurate generation forecasts is essential for
integrating high level of cost-competitive solar power while
maintaining a high level of grid stability (Hart et al., 2012;
Inman et al., 2013). Motivated by the pressing need for
more effective predictive ability for solar integration, differ-
ent solar forecasting methodologies (physics-based, imag-
ing, stochastic learning and regression models, etc.) have
been developed for various temporal horizons ranging
from minutes to several days (Kalogirou, 2001; Li et al.,
2008; Bacher et al., 2009; Huang et al., 2010; Mellit and
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Pavan, 2010; Hassanzadeh et al., 2010; Marquez and
Coimbra, 2011; Pedro and Coimbra, 2012; Lave et al.,
2012; Hart et al., 2012; Marquez and Coimbra, 2013a;
Marquez et al., 2013; Inman et al., 2013; Quesada-Ruiz
et al., 2014).

The performance of individual forecasting method can be
further improved by real-time reforecasting, i.e., by adopt-
ing stochastic tools based on the analysis of the forecast
and error time series. Reforecasting is mostly used in
weather and climate forecasts to diagnose systematic bias,
recognize model deficiencies, statistically correct forecast
errors, and run data assimilation, thereby aiding in the
calibration of forecasts and improving forecast skills and
reliability (Carter et al., 1989; Kalnay et al., 1996;
Krishnamurti et al., 1999; Rajagopalan et al., 2002; Hamill
et al., 2004; Hamill et al., 2006; Whitaker et al., 2006;
Wilks and Hamill, 2007). In this work, the application of
re-forecasting advanced here is different than the one used
for meteorological models. Reforecasting in meteorology
is used over long periods of historical data to fine tune the
parameters of deterministic models, while here the proposed
reforecasting is a method to statistically improve predictive
model in real-time using optimized stochastic learning tech-
niques. In this work, the reforcasting operates as adaptive
Model Output Statistics (MOS) enhancers for each of the
baseline forecasting models.

Accordingly, reforecasting is applied for 3 distinct intra-
hour forecast horizons (5, 10 and 15 min ahead) of power
output for a photovoltaic power station in Boulder City,
Nevada. The data used for model development and testing
are discussed in Section 2. The three baseline forecasting
models: a cloud tracking based deterministic model (Det),
an Autoregressive and Moving Average model (ARMA),
and a k-th Nearest Neighbor model (kNN) are described
in Section 3. Section 3 also covers the smart reforecasting
model, the GA optimization, and the statistical metrics
for performance evaluation. Results and discussions are
presented in Section 4. The main conclusions of this work
are summarized in Section 5.

2. Data

Power output data is obtained from a 48 MW segment
(approximately 1.3 km?) of the Sempra Generation Copper
Mountain solar power plant (114.993° W, 35.782° N,
Fig. la). Cadmium telluride thin film panels are installed
and fixed at an elevation angle of 25° with a due south
azimuth. The generated power is collected by 96 inverters,
and power output data is quality controlled by inspecting
the output from each individual inverter.

Occasionally, the output measurements from a small
subset of inverters are unavailable (less than 4 on a single
day). As a result, the analyses and forecasts presented here
are based on the average of available measurements. From
Nov Ist to Dec 5th, 2011, the inverter-average power output
are archived by a OSISoft PI Historian Server maintained
by Sempra and transmitted to a similar server at the
University of California, San Diego (UCSD). The sampling
interval of the power output is thirty seconds.

Two Total Sky Imagers (TSIs, Fig. 1b) were installed by
UCSD at the Copper Mountain solar power plant in July
2011 for automatic cloud observations. The TSI uses a
spherical mirror to reflect the sky hemisphere into a down-
ward pointing camera. Images are captured every 30 s at an
effective resolution of 420 x 420 pixels. To reduce the
intensity of reflected direct solar beam (i.e. the image of
the sun itself), a strip of black rubber tape (a “shadow-
band”) is affixed to the rotating mirror. The shadowband
improves image quality and reduces potential sensor dam-
age, but covers approximately 0.70 steradians of the sky
hemisphere, which is about 14% of the image region used
in the deterministic forecasting model (<80° zenith angle).

The power and imaging data (26,638 points each) are
first paired and then split for model estimation and evalu-
ation. The first 15,000 data points are used to estimate the
parameters of the Det, ARMA, and kNN models. The
remaining data are randomly divided into a learning subset
and a testing subset (70% and 30%, respectively). The
learning set (approximately 8000 data points) is used for
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Fig. 1. (a) Schematic image of the analyzed solar power plant operated by Sempra Generation. The 48 MW subset of panels used in this work is indicated
by the polygonal grayscale panel overlays. Each shade of gray is associated with one of the 96 inverters. The locations of the two sky imaging units used in
the deterministic forecast are also denoted, along with the distance between them. (b) The Total Sky Imager (TSI) mounted on an inverter enclosure at the

Copper Mountain plant.



Download English Version:

https://daneshyari.com/en/article/1549749

Download Persian Version:

https://daneshyari.com/article/1549749

Daneshyari.com


https://daneshyari.com/en/article/1549749
https://daneshyari.com/article/1549749
https://daneshyari.com/

