

Available online at www.sciencedirect.com

ScienceDirect

Solar Energy 108 (2014) 287-307

www.elsevier.com/locate/solener

Direct normal irradiance forecasting and its application to concentrated solar thermal output forecasting – A review

Edward W. Law a,*, Abhnil A. Prasad , Merlinde Kay A, Robert A. Taylor b,

^a School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia ^b School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia

> Received 7 April 2014; received in revised form 6 July 2014; accepted 9 July 2014 Available online 5 August 2014

> > Communicated by: Associate Editor Jan Kleissl

Abstract

Solar irradiance forecasting can reduce the uncertainty of solar power plant output caused by solar irradiance intermittency. Concentrated solar thermal (CST) plants generate electricity from the direct normal irradiance (DNI) component of solar irradiance. Different forecasting methods have been recommended for a range of forecast horizons relevant to electricity generation. High DNI forecast accuracy is important for achieving accurate forecasts of CST plant output which are shown to increase CST plant profitability. This paper reviews the DNI forecast accuracy of numerical weather prediction models, time series analysis methods, cloud motion vectors, and hybrid methods. The results of the reviewed papers are summarised to identify the best DNI forecast accuracy for particular forecast horizons. The application of DNI forecasts to operate CST plants is also briefly reviewed.

This paper found that additional research is required for time series analysis methods to corroborate current results and for satellite-based cloud motion vectors to establish DNI forecast accuracy. It was also concluded that future research should use the same error metrics to report results to facilitate fair comparison of DNI forecast accuracy from different studies. In addition, the creation of a common high quality DNI data set to evaluate all forecasting methods would also help to verify best forecast accuracy. The review of DNI forecasting for CST plants found that using accurate 2-day ahead DNI forecasts can increase revenue and decrease penalty costs. Future research should investigate benefits from using short-term DNI forecasts from the intra-hour forecast horizon up to the 6-h forecast horizon to determine CST plant operation. Another aspect to research is to determine whether the benefit of DNI forecasts for a CST plant is affected by different regulations in different electricity markets.

© 2014 Elsevier Ltd. All rights reserved.

Keywords: DNI forecasting; Numerical weather prediction; Time series analysis; Cloud motion vector; Forecast accuracy; Concentrated solar thermal power

1. Introduction

Solar energy is a renewable resource that has established itself in both small-scale and large-scale electricity genera-

E-mail address: edward.law@unsw.edu.au (E.W. Law).

tion. Electricity can be generated from solar irradiance by either non-concentrated photovoltaic (PV) modules or by concentrated solar thermal (CST). PV output is calculated from global irradiance on the plane of the PV modules which can be derived from global horizontal irradiance (GHI) (Lorenz et al., 2009, 2011). GHI consists of diffuse irradiance and direct normal irradiance (DNI) components. In contrast to PV, CST output calculations only use the DNI component because diffuse irradiance cannot

^{*} Corresponding author. Address: School of Photovoltaic and Renewable Energy Engineering, Tyree Energy Technologies Building, University of New South Wales, Sydney, New South Wales 2052, Australia.

Nomenclature			
AERONE	Γ Aerosol Robotic Network	MLP	multi-layer perceptron
AFSOL	Aerosol-based Forecasts of Solar Irradiance	MM5	Fifth-generation Pennsylvania State Univer-
	for Energy Applications		sity-National Center for Atmospheric Re-
AI	artificial intelligence		search Mesoscale Model
ANN	artificial neural network	MOS	Model Output Statistics
AOD	aerosol optical depth	MRM	Meteorological Radiation Model
AR	autoregressive	MSG	Meteosat Second Generation
ARIMA	autoregressive integrated moving average	MW h	Megawatt-hour
ARMA	autoregressive moving average	NAM	North American Model
ARPS	Advanced Multiscale Regional Prediction	NDFD	National Digital Forecast Database
	System	NEM	National Electricity Market
BOM	Australia Bureau of Meteorology		NOAA's Satellite and Information Service
BRL	Boland-Ridley-Lauret model	nMAE	normalised MAE
CARDS	Coupled AutoRegressive and Dynamical	nMBE	normalised MBE
	System	NOAA	National Oceanographic and Atmospheric
CSM	clear sky model		Administration
CST	concentrated solar thermal	nRMSE	normalised RMSE
DNI	direct normal irradiance	NWP	numerical weather prediction
ECMWF	European Centre for Medium-range Weather	PV	photovoltaic
	Forecasts	REST2	Reference Evaluation of Solar Transmit-
ESRA	European Solar Radiation Atlas		tance – 2 Bands
EUMETSA	AT European Organisation for the Exploita-	RMSE	root mean square error
	tion of Meteorological Satellites	RTM	radiative transfer model
GFS	Global Forecast System	SUNY	State University of New York GOES satel-
GHI	global horizontal irradiance		lite-based solar model
	High-resolution Limited Area Model	SVM	support vector machine
JMA	Japan Meteorology Agency	SVR	support vector regression
	library for radiative transfer	TDNN	time delay neural network
LS-SVM	least squares support vector machine	TES	thermal energy storage
MA	moving average	THI	time horizon invariant
MACC	Monitoring Atmospheric Composition and	TSA	time series analysis
NAF	Climate	TW h	Terawatt-hour
MAE	mean absolute error	WRF	Weather Research and Forecasting
MAPE	mean absolute percentage error	WKF-CL	DDA high-resolution direct-cloud-assimilat-
MASS	Mesoscale Atmospheric Simulation System		ing WRF
MBE	mean bias error		

be effectively concentrated. GHI and DNI are intermittent due to events like clouds temporarily covering the sun, thus causing uncertainty in the electricity supply from solar power plants. High uncertainty in supply increases the risk of an unexpected imbalance in supply and demand occurring, which can result in network voltage and frequency exceeding safe operation limits thereby reducing network reliability and security (NERC, 2009; AEMO, 2010). A network will have ancillary services or operating reserves allocated to correct these imbalances and high supply uncertainty makes it more difficult to ensure that the allocation is both sufficient and economic (Ela et al., 2011). Weather forecasting methods can be applied to forecast solar irradiance, which in turn can be used to forecast solar

power plant electricity output and reduce supply uncertainty.

Forecasts can be obtained for various horizons and the relevant forecast horizons are determined by the local electricity market regulations. For example, the Australian National Electricity Market (NEM) requires power plants to submit dispatch offers up to 40 h ahead every day and allows power plants to update dispatch quantities up to 5 min before dispatch orders are made (Elliston and MacGill, 2010). Based on these regulations, it would be useful to have forecast methods that are accurate at the forecast horizons of 40-h and 5-min ahead, in addition to other forecast horizons that are relevant to NEM regulations.

Download English Version:

https://daneshyari.com/en/article/1549882

Download Persian Version:

https://daneshyari.com/article/1549882

<u>Daneshyari.com</u>