

Available online at www.sciencedirect.com

ScienceDirect

Solar Energy 107 (2014) 12-25

www.elsevier.com/locate/solener

Exergy and thermoeconomic optimization of a water-cooled glazed hybrid photovoltaic/thermal (PVT) collector

G. Evola*, L. Marletta

Department of Industrial Engineering, University of Catania, Viale A. Doria 6, 95125 Catania, Italy

Received 27 November 2013; received in revised form 20 May 2014; accepted 21 May 2014

Available online 24 June 2014

Communicated by: Associate Editor G.N. Tiwari

Abstract

Hybrid photovoltaic/thermal collectors (PVT) consist of common photovoltaic modules cooled by a suitable fluid, and convert solar radiation simultaneously into both thermal and electric energy. The heat transfer between PV cells and fluid allows to reduce the temperature of the PV cells; this improves the electrical efficiency, but also makes available low-grade heat for specific applications. As a consequence, PVT modules show a very interesting overall energy efficiency.

In this paper, the Second Law analysis of a water-cooled PVT collector is presented, based on simulations. The study also discusses a crucial problem for the optimal exploitation of this technology: the electricity production from PV cells is favoured by low temperatures, whereas the usability of the thermal energy gets higher at high temperatures.

The paper demonstrates that, for any operating condition, it is possible to calculate an optimum water inlet temperature that maximizes the total exergy generated by the system. The optimum temperature falls within the range commonly occurring in solar thermal systems, and can be achieved in practice through a simple control-command system. Finally, a thermoeconomic analysis is carried out to define the price of the thermal energy produced by the PVT collector, as a function of its exergy content.

© 2014 Elsevier Ltd. All rights reserved.

Keywords: PVT collectors; Energy efficiency; Thermodynamic optimization; Thermoeconomics

1. Introduction

Hybrid photovoltaic/thermal (PVT) collectors are devices that convert solar radiation simultaneously into thermal and electric energy. This results in a higher overall solar conversion rate per unit surface area, if compared to that provided by the separate production of electric and thermal energy through common PV and thermal collectors placed next to each other.

Basically, PVT collectors consist of a thin plate made of highly conductive material, on top of which the PV cells are

* Corresponding author. Tel.: +39 957382453. E-mail address: gevola@unict.it (G. Evola). inserted by lamination; here, solar radiation is collected and partially converted into electricity. In the same time, the circulation of a fluid (usually air or water) against the absorber plate is allowed: this fluid, while removing the excess heat from the PV cells, lowers their temperature and potentially improves their electrical efficiency; in the meanwhile, low-grade heat can be made available for appropriate uses.

However, since PVT collectors are a quite recent technology, many issues concerning their design, the market potential and possible barriers for their practical application are still being investigated, as witnessed by the copious number of papers recently published about this topic. The main findings are collected in some recommendable review

Nomenclature		
a external side of the channel (m) A_c overall surface area of the collector (m ²) A_p overall surface area of the absorber plate (m ²) A_{PV} surface area covered by PV cells (m ²)	T_{in} inlet temperature (K) T_{m} mean thermodynamic temperature (K) T_{out} outlet temperature (K) T_{p} temperature of the absorber plate (K)	
c_{pp} specific heat of the absorber plate (J/(kg K))	T_0 reference temperature (dead state) (K)	
c_{pw} specific heat of water (J/(kg K))	T^* reduced temperature (m ² K/W)	
C_{el} unit cost of electricity (ϵ /kW h)	U_L overall heat transfer coefficient of the a	bsorber
$C_{t,en}$ unit cost of thermal energy (ϵ/kW h)	plate $(W/(m^2 K))$	
$C_{t,ex}$ unit cost of thermal exergy (ϵ /kW h) annual capital cost (ϵ)	u_w wind velocity over the glass cover (m/s) u_c water velocity inside the channel (m/s)	
CRF capital recovery factor	u_c water velocity inside the channel (m/s) W tube spacing (m)	
D_{eq} equivalent diameter for the square tube (m)	\dot{Z} annual capital cost rate (ϵ /year)	
\dot{e}_{sol} exergy rate of the solar radiation per unit	α_p short-wave absorptance of the absorber	plate
surface (W/m ²)	β tilt angle on the horizontal plane (°)	•
\dot{E}_{el} electric exergy rate (W)	δ_c thickness of the channel, m	
\dot{E}_Q thermal exergy rate (W)	δ_{ins} thickness of the insulating layer, m	
F fin efficiency	δ_p thickness of the absorber plate, m	
H width of the collector (m)	ε_g thermal emissivity of the glazing	
h_{cc} internal convective heat transfer coefficient for	ε_p thermal emissivity of the absorber plate	
the channel $(W/(m^2 K))$ h_{cg} external convective heat transfer coefficient for	η overall energy efficiency of the collector electric energy efficiency of the collector	
h_{cg} external convective heat transfer coefficient for the glazing (W/(m ² K))	1 1 2 2 3 3 5 7 11	
h_{in} specific enthalpy for the inlet flow (J/kg)	$ \eta_{PV} $ electrical efficiency of the PV cells electrical efficiency at standard test conditions.	ditions
h_{out} specific enthalpy for the outlet flow (J/kg)	η_t thermal energy efficiency of the collecto	
i annual interest rate, %	λ_c thermal conductivity of the channel (W)	
I_{sol} solar irradiance (W/m ²)	λ_{ins} thermal conductivity of the insulating la	
L length of the collector (m)	(m K))	
\dot{m}_{ws} water mass flow rate per unit surface $((kg/h)/m^2)$	λ_p thermal conductivity of the absorber pl (m K))	ate (W/
n expected lifespan of the PVT collector (years)	λ_w thermal conductivity of water (W/(m K))
n_{PV} number of PV cells	μ temperature coefficient of the PV cells (
Nu Nusselt number	μ temperature coefficient of the PV cells (ξ overall exergy efficiency of the collector ξ_{el} electrical exergy efficiency of the collector	
P_{el} electric power (W)	ξ_{el} electrical exergy efficiency of the collected	
PF packing factor	ξ_t thermal exergy efficiency of the collecto	
Q_{abs} absorbed thermal power (W)	ρ_{gd} short-wave reflectance of the glazing for	r diffuse
\dot{Q}_L heat losses to the environment (W) \dot{Q}_t overall useful thermal power (W) \dot{Q}_w useful thermal power per single fin (W)	radiation Stofan Poltzmann constant (W/(m² V4))
\dot{Q}_t over an useful thermal power (w) \dot{Q}_w useful thermal power per single fin (W)	σ Stefan-Boltzmann constant (W/(m ² K ⁴) τ_g short-wave transmittance of the glazing	
Re_{Deq} Reynolds number	τ_g short-wave transmittance of the glazing ψ latitude (°)	
s_{in} specific entropy for the inlet flow (J/(kg K))	ψ_s conversion coefficient for the exergy	of solar
s_{out} specific entropy for the outlet flow $(J/(kg K))$	radiation	55141
t time (s)		
T_a outdoor air temperature (K)		

papers (Charalambous et al., 2007; Arif Hasan and Sumathy, 2010; Zhang et al., 2012; Moradi et al., 2013; Arcuri et al., 2014). Here, the effects of the main design parameters on the collector performance are investigated, e.g. the type of fluid, the mass flow rate, the number of covers and the shape of the absorber plate.

Another key point emerging in the literature is the role of the fluid temperature. Indeed, if one aims at producing hot water ready for technical applications, it should be necessary to operate at least around 40–50 °C; however, such a temperature might penalize the electric performance of the PV cells. On the contrary, lower temperatures would allow better electrical efficiency, but they would also affect the usefulness of the recovered heat (Tiwari, 2002).

To understand how much useful is the heat, as a function of the temperature at which it is available, the most

Download English Version:

https://daneshyari.com/en/article/1549914

Download Persian Version:

https://daneshyari.com/article/1549914

Daneshyari.com