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A U T H O R - H I G H L I G H T S

� Optimizing autonomously oscillating systems with uncertain parameters.
� Robust stability guarantees for optimal modes of process operation.
� Addressing stability constraints as a system of nonlinear equations.
� Illustration of the method with robust optimization of chemical reaction systems.
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a b s t r a c t

We present a method for determining optimal modes of operation for autonomously oscillating systems
with uncertain parameters. In a typical application of the method, a nonlinear dynamical system is
optimized with respect to an economic objective function with nonlinear programming methods, and
stability is guaranteed for all points in a robustness region around the optimal point. The stability
constraints are implemented by imposing a lower bound on the distance between the optimal point and
all stability boundaries in its vicinity, where stability boundaries are described with notions from
bifurcation theory. We derive the required constraints for a general class of periodically operated
processes and show how these bounds can be integrated into standard nonlinear programming methods.
We present results of the optimization of two chemical reaction systems for illustration.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The impact of autonomous oscillations and periodic forcing on
economic process performance has been investigated for decades.
For example, Douglas and Rippin (1966) demonstrate that the
performance of an isothermal continuous stirred-tank reactor (CSTR)
may be improved by periodic forcing of the feed. The authors also
consider a first order irreversible exothermic reaction in a non-
isothermal CSTR. For this case, they show that autonomous oscilla-
tions may lead to increased average product concentration compared
to steady state operation. Similar investigations have been carried
out later by other authors. Jianquiang and Ray (2000) use autono-
mous oscillations to improve the performance of a bioreactor used
for sludge water treatment. Stowers et al. (2009) show that oscilla-
tions can increase the product yield in yeast fermentation. Parulekar

(2003) demonstrated that the performance of series–parallel reac-
tions can be improved by forced periodic operation. The authors also
discuss the benefit of forced periodic operation compared to steady
state operation in recombinant cell culture processes. Abashar and
Elnashaie (2010) show that periodically forced fermentors provide
higher average bioethanol concentrations than fermentors operated
in a steady state.

Whenever models of the production process of interest and their
economics are available, optimizationmethods can be used to find an
optimal mode of operation. It is known, however, that optimizing a
dynamical system may result in a mode of operation that is optimal
but unstable (Mönnigmann and Marquardt, 2002; Kastsian and
Mönnigmann, 2012). While an unstable mode could be stabilized
by feedback control, often stable solutions are preferred due to the
additional effort required for controlling unstable states.

We summarize existing methods for the optimization of periodic
processes that are able to cope with stability constraints. Mombaur
et al. (2005a,b) and Mombaur (2009) consider the optimization of
periodic motions with guaranteed stability by solving two-level
optimization problems. They optimize the economic objective
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function and minimize the spectral radius at the first and second
levels, respectively. The authors guarantee the resulting periodic
orbits to be stable by minimizing the spectral radius and forcing all
eigenvalues to have moduli strictly smaller than one. Parametric
uncertainties in the underlying process models are not considered.

Burke et al. (2003) suggest minimizing the pseudo-spectral
radius to guarantee robust stability. The pseudo-spectral radius
measures the largest modulus of the eigenvalues of matrices
which vary in an ε-neighborhood of the reference matrix. The
ε-neighborhood is defined with the standard Euclidean norm.
For linear systems it is equivalent to the H1 norm (Burke et al.,
2003) or linear matrix inequalities (LMI) conditions (Gahinet and
Apkarian, 1994). Since the pseudo-spectral radius typically is a
nonsmooth function of the corresponding Jacobian entries,
Vanbiervliet et al. (2009) and Diehl et al. (2009) proposed to use
the smoothed spectral radius. The smoothed spectral radius is
based on the H2-norm and computed by solving relaxed Lyapunov
equations.

Chang and Sahinidis (2011) consider parametric uncertainty for
optimal steady state solutions and possible extension of the
proposed method to oscillating processes. The authors solve
semi-infinite programs, where stability constraints are addressed
with Hurwitz's criterion. Stability constraints are stated for every
point of an uncertainty region. An infinite number of stability
constraints are implemented as several relaxation problems that
are solved iteratively.

We present an alternative approach for stating constraints for
local asymptotic stability while optimizing autonomously oscillat-
ing systems with parametric uncertainties. In contrast to Chang
and Sahinidis (2011), we ensure stability and robustness by a finite
number of nonlinear constraints. Our approach belongs to the
class of normal vector methods (Mönnigmann and Marquardt,
2002), which are based on nonlinear programming and applied
bifurcation theory. Originally, the normal vector approach was
developed to guarantee stability of optimal steady states of ordinary
differential equations (ODE) and differential-algebraic (DAE) sys-
tems (Mönnigmann and Marquardt, 2002; Mönnigmann et al.,
2007). It has been applied to a number of examples from chemical
engineering (Mönnigmann and Marquardt, 2003, 2005). Gerhard
et al. (2008) and Muñoz et al. (2012) extend the method for robust
disturbance rejection and the simultaneous consideration of steady
state stability and disturbance rejection, respectively. Kastsian and
Mönnigmann (2010) cover the case of fixed points of discrete time
systems. In the present paper, we extend the normal vector
approach to stability constraints for periodic solutions of ODE
systems. Similar but preliminary results are reported in Kastsian
and Mönnigmann (2012).

The paper is organized as follows. We begin with a formal
problem statement in Section 2 and outline the normal vector
method in Section 3. In Section 4 the characterization of the
stability boundaries, or more generally critical boundaries, is
introduced. The normal vectors to these critical boundaries and
the nonlinear programs based on them are discussed in Section 5.
The proposed method is illustrated in Section 6. A conclusion is
stated in Section 7.

2. System class and optimization problems of interest

We consider dynamic systems described by a set of nonlinear
parameterized ordinary differential equations

_xðtÞ ¼ f ðxðtÞ;αÞ; xð0Þ ¼ x0; ð1Þ

where xðtÞARnx and αARnα denote state variables and parameters,
respectively. The function f maps from some open subset of

Rnx � Rnα onto Rnx and is assumed to be smooth with respect to
all variables and parameters.

Let φðx0; t;αÞ denote the solution of (1) at time t for the initial
condition xð0Þ ¼ x0. Assume that this solution is a periodic orbit
with period T. It therefore satisfies

φðx0; T ;αÞ�x0 ¼ 0: ð2Þ
Without giving details we note that a phase condition is required
to identify a periodic orbit uniquely. Essentially, the phase condi-
tion is necessary, because the same periodic orbit results if the
initial condition is shifted along the orbit. Technically, the phase
condition is of the form

sðx0; T ;αÞ ¼ 0; ð3Þ
where s maps from a subset of Rnx � Rþ � Rnα onto R (see, e.g.,
Kuznetsov, 1998 for details).

The stability of the periodic orbit φ can be investigated with
the Jacobian matrix

M¼φx0 ðx0; T ;αÞ: ð4Þ

Since this Jacobian is often referred to as the monodromy matrix,
we denote it by M for short. We briefly recall that the monodromy
matrix has at least one eigenvalue equal to one, and its remaining
nx�1 eigenvalues determine the stability of the periodic orbit.
More precisely, let these eigenvalues be denoted by λ1;…; λnx �1.
The periodic orbit is locally asymptotically stable, if jλijo1 for all
i¼ 1;…;nx�1 (see, e.g. Kuznetsov, 1998 for details).

The stability of a steady state can be characterized in a similar
fashion with the Jacobian fx. A steady state ðx;αÞ is locally
asymptotically stable, if the real parts of all eigenvalues of the
Jacobian f xðx;αÞ are strictly negative.

We assume that parameters αi in the model (1) are uncertain
and lie in the intervals

αiA ½αð0Þ
i �Δαi;α

ð0Þ
i þΔαi�; i¼ 1;…;nα; ð5Þ

where αð0Þ
i are the central values of the independent uncertainty

intervals and Δαi represent the uncertainties. We are interested in
finding steady states or periodic solutions that are optimal with
respect to a real valued objective function ϕ, which may represent
product concentration, productivity, or economic profit, for exam-
ple. We seek optimal solutions that are robust in the sense that
they are stable for any parameter α in the uncertainty region (5).
More precisely, we call a stable periodic orbit or a stable steady
state robust if

SðPÞðx0; T ;αÞ≔
0¼φðx0; T ;αÞ�x0;

0¼ sðx0; T ;αÞ;
jλjr1 8λAsðφx0 ðx0; T ;αÞÞ

8><
>: ð6Þ

respectively

SðSÞðx;αÞ≔
0¼ f ðx;αÞ;
ReðλÞr0 8λAsðf xðx;αÞÞ

(
ð7Þ

for all αA ½αð0Þ �Δα;αð0Þ þΔα� and in a neighborhood of x0. In
(6) and (7) the symbol sð�Þ denotes the spectrum of a matrix. The
optimization problem of interest for periodic orbits reads

max
xð0Þ0 ;T ð0Þ ;αð0Þ

ϕðxð0Þ0 ; T ð0Þ;αð0ÞÞ

s:t: 0¼φðxð0Þ0 ; T ð0Þ;αð0ÞÞ�xð0Þ0 ; ð8aÞ

0¼ sðxð0Þ0 ; T ð0Þ;αð0ÞÞ; ð8bÞ

0rhðxð0Þ0 ; T ð0Þ;αð0ÞÞ; ð8cÞ

SðPÞðx; T ;αÞ or SðSÞðx;αÞ 8αA ½αð0Þ �Δα;αð0Þ þΔα�: ð8dÞ
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