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H I G H L I G H T S

� Development of inequality parameter constraints from steady state data.
� Implementation of parameter inequality constraints in recursive estimators and MHE.
� Two-stage approach to constrained parameter estimation.
� Initial unconstrained estimate followed by one-step constrained optimization.
� Improved estimation and control performance demonstrated on realistic processes.
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a b s t r a c t

Parameter estimation is usually approached by augmenting parameters to the states, leading to the
simultaneous estimation of states and parameters. In practice, constraints on the values of the
parameters can often be generated, and the incorporation of these constraints could improve the
estimation performance. In this paper, we consider the inequality constrained parameter estimation
problem. A new method of constructing inequality parameter constraints from routine operating data is
introduced. Then, we introduce a framework for constraint implementation, based on first solving an
unconstrained estimation problem and then a constrained problem, with recursive estimators such as
the unscented Kalman filter (UKF) and the ensemble Kalman filter (EnKF); we also show that the same
framework is applicable for moving horizon estimation (MHE). Then, we develop a method for constraint
implementation for the UKF and the EnKF that yields faster convergence than the conventional
projection method. Through simulations of two chemical processes, we show that the proposed method
is able to provide fast recovery of state and parameter estimates from inaccurate initial guesses, leading
to better estimation and control performance.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

An accurate dynamic model is required to achieve good
monitoring, online optimization and control performance of che-
mical processes. Most process models and measurements are
corrupted by noise and modeling inaccuracy, leading to the need
for estimation of states and parameters. Very often, the state and
parameter estimation problems are solved simultaneously; this is
done by specifying the parameters to be estimated as augmented
states. This dual estimation problem is a nonlinear filtering
problem for most chemical processes. Various estimation algo-
rithms have been developed to sequentially estimate a nonlinear
system with online measurements.

Sequential filtering algorithms such as the extended Kalman
filter (EKF), the unscented Kalman filter (UKF) (Julier et al., 2000),

the ensemble Kalman filter (EnKF) (Evensen, 1994) and moving
horizon estimation (MHE) (Robertson et al., 1996) are powerful
tools for nonlinear state estimation. The most widely used algo-
rithm for nonlinear systems is the EKF, which employs the
Jacobian to locally linearize the model so that the conventional
Kalman filter (KF) algorithm can be applied. However, the perfor-
mance of the EKF may suffer with highly nonlinear systems due to
the error introduced by linearization. Also, the calculation of
Jacobian matrices can be computationally intensive for large
systems. To overcome these difficulties encountered with the
EKF, Julier et al. (1995) proposed the UKF. It uses the unscented
transform (UT), which employs a set of weighted points (called
sigma points) to represent the estimated mean and covariance,
and the sigma points are propagated through the nonlinear system
dynamics. It has computational efficiency owing to its Kalman filtering
structure, as well as a better approximation than the EKF for nonlinear
systems. Furthermore, it eliminates the need for the calculation of
the Jacobian. The superior performance of the UKF compared to
the EFK is demonstrated by Wan and van der Merwe (2002),
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Romanenko and Castro (2004) and Shenoy et al. (2010), among
others. The ensemble Kalman filter (EnKF), originally proposed by
Evensen (1994), is another approach for nonlinear estimation.
Instead of the deterministic sampling strategy used in the UKF, the
EnKF employs the Monte Carlo sampling method to generate a
large number of random samples to carry out the prediction and
update required in Kalman filtering. The EnKF is generally
acknowledged to be efficient for systems with a large number of
variables. MHE, which is an optimization based method, solves a
nonlinear programming (NLP) problem subject to constraints over
a finite horizon. However, the computational efficiency remains an
issue for a long horizon or a large number of decision variables
(Lopez-Negrete et al., 2011).

In most processes, it is possible to specify constraints on parameter
values; these may be equality or inequality constraints. For example,
the surface area of a reactor should be positive (and fall within a
reasonable range). In most cases, it is easier to obtain accurate
inequality constraints, which provide bounds on the parameter to be
estimated, compared to equality constraints (Zhu and Huang, 2011).
Walker (2006) proposed unstable fixed points as additional con-
straints in the parameter estimation process. In this paper, we
introduce an approach to constructing inequality parameter con-
straints from steady-state measurement data corrupted with moder-
ate noise. Inequality constraints are naturally handled by moving
horizon estimation (MHE) due to its optimization based algorithm.
However, MHE requires a heavy on-line computational load, and the
exact arrival cost is hard to determine for the constrained estimation.
Due to this, some researchers have explored the implementation of
constraints within the framework of recursive estimation. Vachhani
et al. (2005a) proposed the recursive nonlinear dynamic data reconci-
liation (RNDDR) method, in which the constraints are taken into
consideration and the nonlinear state and covariance propagation are
based on the EKF algorithm. Vachhani et al. (2006) later proposed the
unscented recursive nonlinear dynamic data reconciliation (URNDDR)
method as a combination of the UKF and RNDDR, which provided
more accurate and efficient nonlinear constrained estimation.
Recently, Prakash et al. proposed constrained ensemble Kalman
filtering (C-EnKF) (Prakash et al., 2010) and constrained particle
filtering (C-PF) (Prakash et al., 2011) with the use of constrained
Monte Carlo samples and probability density function (PDF) truncation
for nonlinear estimation. In this paper, we propose a new constraint
handling method with the UKF and the EnKF specifically for the
inequality constrained parameter estimation problem, and show that
it provides improved estimation performance.

Therefore, the main contributions of this paper are (i) the
formulation of inequality constraints on parameters using routine
steady-state operating data, (ii) the development of a framework
for constraint handling in recursive estimation with the UKF and
the EnKF involving solving for the unconstrained estimate fol-
lowed by the solution of a constrained optimization problem, and
(iii) the development of new constraint-handling methods that
avoid inconsistency between state and parameter estimates. The
rest of the paper is organized as follows. Section 2 addresses the
parameter estimation problem as a nonlinear estimation problem
by augmenting unknown parameters as states. The proposed
approach to constructing inequality parameter constraints from
routine operating data is introduced in Section 3. Then, in Section 4,
we propose a constrained parameter estimation scheme with
inequality constraints, as well as constraint implementation meth-
ods with the UKF and the EnKF that provide better performance
than the conventional projection method. We also discuss the use
of this constraint implementation method with the MHE. Section 5
presents open and closed-loop simulations of a CSTR and a PMMA
polymerization reactor system to demonstrate the performance
of the proposed method for improved estimation and control
performance.

2. Problem formulation

In this work, we consider the following continuous-discrete
nonlinear stochastic process model:

_x ¼ f ðx;u;θÞþw ð1aÞ

yk ¼ hðxkÞþvk ð1bÞ
where x; xkARn denote the vector of states, uARq denotes the
vector of known manipulated variables and ykARm denotes the
vector of available measurements. f : Rn-Rn is the state function
with parameters θARp and h : Rn-Rm is the measurement
function. wARn and vkARm are process and measurement noise
respectively, with independent distributions

w�N ð0;Q Þ ð2Þ

vk �N ð0;RÞ ð3Þ
where Q and R are covariance matrices.

The dual estimation problem arises when we have incomplete
knowledge of the parameters, and we attempt to estimate states
and parameters simultaneously. The most common approach for
dual estimation is to combine the state and parameter vectors x
and θ into an augmented state xaARnþp and carry out standard
state estimation on the augmented system:

xa ¼
x

θ

� �
ð4Þ

_x ¼ f ðx;u;θÞþw ð5aÞ

_θ ¼ 0þwp ð5bÞ

yk ¼ hðxkÞþvk ð5cÞ
where Eq. (5b) is a random walk model for the parameter θ. wp is
chosen as a zero mean Gaussian noise with covariance matrix Qp.
Rewriting the model with augmented state xa gives

_xa ¼ f ðxa;uÞþwa ð6aÞ

yk ¼ hðxakÞþvk ð6bÞ
where we redefine f : Rnþp-Rnþp as the nonlinear state function
and h : Rnþp-Rm as the measurement function. wa ¼ ½wwp

� denotes
the augmented state noise, which has the following distribution:

wa �N ð0;QaÞ; Qa ¼
Q 0
0 Qp

" #
ð7Þ

State estimation techniques for this system are described later.
It should be noted that we consider the true parameter values θ to
be constant but unknown. Also, the measurement equation
indicates that the outputs depend on the states, but not directly
on the parameters.

3. Construction of inequality parameter constraints

In this section, we introduce a method to specify inequality
constraints from routine steady-state operating data. We consider
inequality constraints on parameters of the form

dLrcðθ1;θ2;…;θpÞrdU ð8Þ
where cð�Þ is a function describing the parameter relationship, and
dL and dU indicate the lower and upper bounds of the inequality
constraints. In the following content, cðθ1;θ2;…;θpÞ is written as
cðθÞ for notational simplicity.

The inequality constraints given by Eq. (8) may be obtained from
some steady-state measurements, say fy1; y2;…; yNg. The process
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