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Abstract

Spatial correlations between ramp rates are important determinants for output variability of solar power plants, since correlations
determine the amount of geographic smoothing of solar irradiance across the plant footprint. Previous works have modeled correlations
empirically as a decreasing function of the distance between sites, resulting in isotropic models. Field measurements show that correla-
tions are anisotropic – correlations are different for along-wind site pairs than for cross-wind site pairs. Here, cloud fields are modeled
using a spatial Poisson process. By advecting the cloud field using a constant cloud velocity, spatial correlations for ramp rates are
obtained. Spatial correlations were shown to be a function of along-wind and cross-wind distance, ramp timescale, cloud speed, cloud
cover fraction, and cloud radius. The resulting anisotropic correlation model explains the anisotropic effects well at timescales less than
60 s but performs worse than existing empirical isotropic models at longer time scales.
� 2013 Elsevier Ltd. All rights reserved.
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1. Introduction

As opposed to traditional generation sources such as
coal or nuclear power plants, power generated by solar
photovoltaics (PV) can be variable due to the passing of
clouds. As the penetration of solar PV on an electric grid
increases, the ramp rates can become a concern for grid
operators. When considering the aggregate of many PV
systems spread over a geographic area, though, the relative
variability is reduced as the PV systems’ fluctuations are
often not correlated (Perez et al., 2011; Lave et al.,
2012a,b; Perpiñán et al., 2013).

This geographic smoothing effect is well documented.
Sites a few meters to hundreds of kilometers apart were
shown to have a smoothed aggregate output (Otani et al.,

1997; Wiemken et al., 2001; Curtright and Apt, 2008; Lave
et al., 2012a,b). The amount of smoothing generally
increases as the distance between sites increases, but also
depends on the timescale and local meteorological
conditions.

To determine the amount of geographic smoothing, the
correlations of ramp rates at different sites must be deter-
mined. Mills and Wiser (2010) proposed a correlation
equation of the form:
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where C1, C2, b1, and b2 are empirical constants, �t is the
timescale, and dk,l is the distance between sites k and l,
but this equation is difficult to apply as it requires a unique
calibration at each location. Lave and Kleissl (2013) and
Perez et al. (2011) proposed similar, but universal correla-
tion models that depend on the distance, timescale, and
cloud speed (CS):
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respectively. All of these correlation models are isotropic;
they depend on the distance, but not direction between
sites.

Hinkelman (2013) showed that correlations are not iso-
tropic, and instead can vary significantly in the along-wind
and cross-wind directions. This anisotropic effect was
strongest at short timescales, where negative correlations
were observed in the along-wind direction but not in the
cross-wind direction. In parallel with the present paper,
Lonij et al. (2013) developed an empirical anisotropic
model with exponential decreases in correlation as a func-
tion of spatial distance relative to the cloud position based
on cloud advection (distance minus cloud speed multiplied
by time elapsed), time elapsed, and averaging time.

While previous works (Mills and Wiser, 2010; Perez
et al., 2011; Lave and Kleissl, 2013; Lonij et al., 2013) have
developed models through empirical fits to measured corre-
lations, in this paper, we present a mathematical model for
spatio-temporal correlations between irradiance ramps.
This is relevant to the modeling of ramp rates of utility-
scale solar power plants from (point) solar irradiance data,
as correlations can be used to upscale the irradiance to sim-
ulate PV plant power output (Lave et al., 2012a,b). Based
on the ramp frequency and magnitudes of the simulated
plant power, energy storage and/or solar forecasting sys-
tems can be designed to mitigate large ramps and comply
with interconnection or power purchase agreements. Rela-
tive to their size, utility-scale solar power plants cause
smaller ramps compared to rooftop systems, since it is
more likely that during a cloud passage some modules
are cloud-covered while others see clear sky. The amount
of this reduction in variability changes with changing cor-
relations between PV modules, and so depends on plant
layout, the timescale of interest, and daily meteorological
conditions. The correlation functions derived in this paper
allow quantifying the reduction in variability based on
cloud speed, along-wind and cross-wind plant dimensions,
cloud cover fraction, cloud size, and timescale.

The mathematical model for correlations between sites
presented here is called the Anisotropic Correlation Model
(ACM). The ACM is distinct from previous models in that
it was derived from direct physical modeling of the passing
of clouds at a constant velocity. It is inherently anisotropic.
In Section 2, the method for determining the correlation in
irradiance at two spatial locations is described. This method
is used in Section 3 to determine the correlation of irradi-
ance ramp rates between two spatial locations. In Section 4,
the sensitivity of the ACM to along-wind and cross-wind
distances between sites as well as to the cloud propagation
distance is investigated, and is compared to the measured

correlations found in Hinkelman (2013). Section 4 also
contains a comparison of ramp rates simulated using the
ACM to measured ramp rates and ramp rates simulated
with other correlation models. The conclusions and
implications of the ACM are described in Section 5. The
novelty in the present paper is that (i) an analytical expres-
sion for correlation functions is derived directly from a
physical model, and (ii) despite the simplicity of the under-
lying model, these functions explain differences in along-
wind and cross-wind correlation that were observed in
experiments.

2. Correlation of irradiance at two spatial locations

In this section, we present a simple Poisson model for
determining the covariance of global horizontal solar irra-
diance (GHI) incident at two spatial locations, e.g. two PV
modules in a PV power plant. Clouds are depicted as opa-
que circles and the irradiance field is represented by binary
states:

P kðtÞ ¼
1; if no cloud covers point k at time t

0; otherwise:

�
ð1Þ

This binary model oversimplifies real GHI signals since
cloud opacity varies and since power output is not reduced
to zero even when a point is covered by a cloud (due to dif-
fuse radiation). For correlation modeling of ramp rates the
latter effect is not significant since correlations are indepen-
dent of the signal mean. The impact of various model
assumptions is discussed in Section 4.4.

Let fMk : k ¼ 1; . . . ;Kg � R2 denote the 2D spatial sen-
sor locations. The cloud centers are generated using a
homogeneous spatial Poisson process in two dimensions,
as shown in Fig. 1. The number of spatial locations in C1

and C2 are independent if C1 and C2 do not intersect.
The center of the ith cloud is denoted Ci 2 R2 and the Ci

’s are assumed to be the realization of a 2D spatial Poisson

Fig. 1. An example of clouds generated according to a Poisson process, in
this case with the probability of any area being covered by a cloud equal to
½: pr;k ¼ 0:5.
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