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a b s t r a c t

The aim of this paper is to develop a model reduction technique based on method of characteristics (MOC)
for control of counter-current distributed parameter systems that are modeled by semi-linear hyperbolic
partial differential equations (PDEs). In our previous work, MOC was shown to be a suitable model reduction
technique for a class of hyperbolic PDEs. This concept is extended to counter-current systems, wherein the
so-called characteristic lines have slopes with opposite signs. Two different approximations are proposed
that allow the use of MOC as a model reduction technique. The open-loop results from MOC are compared
with a large dimensional model, based on the method of lines. The MOC-based models are used for closed
loop simulations within the approximate dynamic programming (ADP) framework. Two case studies are
considered: a non-adiabatic plug flow reactor (having characteristics with two different slopes) and a non-
adiabatic fixed bed reactor (having characteristics with three different slopes). We demonstrate that using
the MOC-based model in an ADP controller results in a significant improvement in computational time, along
with a slight improvement in controller performance.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Convection dominated distributed parameter systems are often
encountered in process industry. Examples for such systems
include plug flow reactors, fixed bed reactors, heat exchangers,
etc. These systems are described by first order hyperbolic partial
differential equations (PDEs). Control of such systems typically
requires design of infinite dimensional controllers whose design
and implementation are complicated (Balas, 1986; Lo, 1973; Choe
and Chang, 1998; Christofides and Daoutidis, 1998, 1996). For
example, Christofides and Daoutidis (1998, 1996) have designed
a controller using output-feedback methodology for these sys-
tems. Here the designed control input is distributed in space and
time and the design is based on the feedback linearized model.
Traditionally, design of model-based controllers employ PDE based
models which often use finite-dimensional approximations using
finite difference or finite element methods. However, these
approximations still result in large-dimensional models, which
may not be well-suited for model-based control (Midhun and
Kaisare, 2011; Dochain et al., 1992; Sorensen et al., 1980). The
difficulty in obtaining reduced dimensional approximations for
first order hyperbolic PDEs was clearly mentioned by Dubljevic
et al. (2005).

This motivates the need for model reduction techniques to
obtain reduced order models. Proper orthogonal decomposition is
one of the popular order reduction techniques and is based on the
modal decomposition which produces low order models by dis-
carding modes with low energy (Padhi and Balakrishnan, 2003;
Shvartsman and Kevrekidis, 1998; Pitchaiah and Armaou, 2010;
Shvartsman et al., 2000). This method is not suitable for hyperbolic
PDEs, as these equations exhibit modes with nearly equal energy.
Thus the use of finite difference or POD based order reduction
method for hyperbolic PDEs results in artificial diffusion which is
not physical. Hence order reduction of first order hyperbolic
equations needs special attention. The method of characteristics
(MOC) is a powerful solution technique applicable to hyper-
bolic PDEs (Hanczyc and Palazoglu, 1995; Shang et al., 2004;
Mohammadi et al., 2010; Fuxman et al., 2007; Shang et al., 2007;
Choi, 2007; Choi and Lee, 2004, 2005). In our previous work
(Sudhakar et al., 2013) we have demonstrated the use of method of
characteristics in obtaining a reduced order model for a class of
systems described by hyperbolic PDEs. The MOC-based reduced
order model may then be used in model-based control such as
model predictive control (MPC). We demonstrated the use of MOC
based reduced order model in MPC and approximate dynamic
programming (ADP) (Sudhakar et al., 2013).

In this work, we focus on using MOC to obtain control-relevant
reduced order models for counter-current systems. The state
variables vary along certain ‘characteristic lines’, which are
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determined by the coefficient of convective term. Physically, one
can visualize this as ‘the flow of information’ occurring in the
direction of convective flow in the system, in the absence of
diffusive term. Consequently, systems with single flow and co-
current systems have characteristic lines with only positive slopes
(Sudhakar et al., 2013). Unlike such systems, counter-current
systems have characteristic lines with both positive and negative
slopes. Additionally, two different approximations are suggested,
resulting in two different implementations of MOC to obtain the
reduced-order model.

ADP has generated a lot of interest in the past decade due to its
potential for giving an optimal closed-loop performance at sig-
nificantly lower online computational cost (Kaisare et al., 2003;
Tosukhowong and Lee, 2009; Padhi and Balakrishnan, 2003;
Midhun and Kaisare, 2011; Lee et al., 2006). The use of reduced
order models in ADP reduces the problem of ‘curse of dimension-
ality’, the major issue in this technique. Further, it results in
improved closed loop performance with reduced online computa-
tional load. Thus in the present work, the ADP based controller is
designed using the reduced order model obtained from the
application of method of characteristics.

Two different case studies of counter-current reactors are
discussed: one containing characteristic lines with two different
slopes, the second with three different slopes. The latter case,
involving characteristics with three slopes, is more complex. Thus
in the present work we have proposed a novel methodology to
obtain a reduced order model for the counter-current system
described by first order hyperbolic PDEs. The use of this reduced
order model is demonstrated in the closed loop simulation using
approximate dynamic programming.

The organization of this paper is as follows: Initially MOC as an
order reduction method is introduced and the methodology of
obtaining reduced order models is explained in detail. Next, the
theory behind ADP and the advantages of using reduced dimen-
sional models in ADP are explained. This is followed by presenta-
tion of the simulation results using MOC and ADP for the two
case studies involving characteristics lines with two and three
slopes. The overall advantages and shortcomings in employing
reduced order models from MOC in ADP based control are then
summarized.

2. Reduced order model using the method of characteristics

MOC is a technique for solving first order hyperbolic PDEs. It is
based on finding a relation between two independent variables,

time and space, through certain lines called characteristic lines.
This results in reducing the PDEs to family of ODEs along these
characteristic lines in the time–space plane. Since the ODE
representation along the characteristic lines is exact, MOC pro-
duces more accurate results than any finite discretization schemes
with the same number of nodes. The accuracy of the MOC solution
depends on the number of characteristic lines used to approximate
the solution surface.

This work deals with counter-current systems involving char-
acteristic lines with positive and negative slopes. The state vari-
ables vary along these characteristic lines. Solutions are obtained
at points of intersection of the characteristic lines (also called
‘nodes’) in the time–space plane. The ratio of the slopes deter-
mines the location of such intersection points.

2.1. PDEs having characteristic lines with opposing slopes

A general convection-dominated counter-current system may
be represented using the following semi-linear hyperbolic PDEs:
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Here Φ1ARn1 , Φ2ARn2 , ψ1;ψ2ARþ . f1 and f2 are nonlinear
functions of appropriate sizes. Let zaðt; z0; t0Þ and zbðt; z0; t0Þ
represent the characteristic lines with two distinct slopes starting
from ðz0; t0Þ. The equation for such characteristics lines as derived
from Eqs. (1) and (2) is given by Knuppel et al. (2010) and
Sudhakar et al. (2013),
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The equation for the dependent variables along these character-
istic lines as derived from Eqs. (1) and (2) is given by Knuppel et al.
(2010), Sudhakar et al. (2013),
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Fig. 1 is a schematic figure showing the characteristic lines with
two slopes having opposite signs. The points of intersection of the
characteristic lines show a periodic pattern (Mohammadi et al.,
2010) which depends, in general on the ratio ψ1=ψ2. The starting
points for the characteristic lines ðz0; t0Þ are depicted as ‘�’ in Fig. 1.
The desired order reduction determines the space interval Δz at
which the characteristic lines are placed and the time interval Δt
is determined by the intersection of the two characteristic lines.
For example, the characteristic lines zaðt; z0; t0Þ and zbðt; z1; t0Þ
intersect at ðzg ; t1Þ and thus Δt ¼ t1�t0. For the purpose of
illustration Fig. 1 is shown with 5 nodal points (z0; z1; z2; z3 and
z4) and the periodic pattern is shown as 3Δt.

Eq. (5) has to be solved along these characteristic lines, starting
at a node ðz0; t0Þ and the solution is obtained at the intersection
points. In order to solve Eq. (5), one needs the simultaneous
variation of both the variables (Φ1 and Φ2) as required by the
functions f1 and f2 along any characteristic line. But starting from
any point, each equation in Eq. (5) is solved along different

Ti
m

e

Length Δz

3Δt

z0 z1 z3 z4z2
t0

t1

t2

t3

t4

t5

t6

t7

t8

t9

zp zq zr zs zt

tp

zg

Fig. 1. Schematic figure showing intersection of characteristic lines in the time–
space plane.
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