

Available online at www.sciencedirect.com

SciVerse ScienceDirect

Solar Energy 86 (2012) 1826-1837

www.elsevier.com/locate/solener

Real-time simulation model development of single crystalline photovoltaic panels using fast computation methods

Jee-Hoon Jung a,*, Shehab Ahmed b,1

Received 26 January 2012; received in revised form 3 March 2012; accepted 6 March 2012 Available online 3 April 2012

Communicated by: Associate Editor Nicola Romeo

Abstract

Real-time simulation and rapid prototyping of power electronics, critical loads, and control systems have prompted recent interest in accurate electrical terminal models of photovoltaic (PV) panels and array systems. Advancement in computing technologies, such as parallel computing and digital signal processing techniques for real-time simulations have allowed the prototyping of novel apparatus to be investigated in a virtual system under a wide range of realistic conditions repeatedly, safely, and economically. This paper accesses numerical iteration methods, selects appropriate techniques, and combines them with model construction methods well suited for boosting the computational speed of an electro-thermal dynamic model of a PV panel. The target computational engine is a parallel processor based real-time simulator to be used in a power hardware-in-the-loop (PHIL) application. Significant improvements resulting from the proposed modeling approach in computation time and numerical convergence speed are verified using experimental results for the target PV panel using Opal-RT's RT-Lab Matlab/Simulink based real-time engineering simulator.

© 2012 Elsevier Ltd. All rights reserved.

Keywords: Photovoltaic panel; Single crystalline; Dynamic model; Real-time simulation; Fast computation; Numerical iteration

1. Introduction

Photovoltaic (PV) systems do not emit any pollutants during electricity generation, and can therefore be installed in densely populated residential or commercial areas with no health risks (Toledo et al., 2010). In addition, single crystalline silicon cells are the most common in the PV industry (Willeke, 2008). A single crystalline silicon cell has a uniform molecular structure. Compared to noncrystalline materials, its high uniformity results in higher

energy conversion efficiency. The higher the energy conversion efficiency of the PV panel, the more electricity it generates for a given area of exposure to sunlight. The conversion efficiency for single-silicon cell commercial modules ranges from 15% to 20%. Moreover, not only are they energy efficient, but single-silicon cell modules are highly reliable in outdoor environments typical of PV system installations.

Significant research effort has been put into the development of elaborate terminal voltage models of PV systems. PV arrays, controllers, battery storage, inverters, and load models have been proposed to predict the performance of a PV system under various load current profiles (Sukamongkol et al., 2002; Joshi et al., 2009; Eltawil and Zhao, 2010). Several PV models were reviewed to select a

^a Power Conversion & Control Research Center, HVDC Research Division, Korea Electrotechnology Research Institute, 12 Bulmosan-ro, Seongsan-gu, Changwon-si, Gyeongsangnam-do 642-120, Republic of Korea

^b Department of Electrical & Computer Engineering, Texas A&M University at Qatar, PO Box 23874, Education City, Doha, Qatar

^{*} Corresponding author. Tel.: +82 10 9811 3251; fax: +82 55 280 1490. *E-mail addresses:* jeehoonjung@keri.re.kr, jung.jeehoon@gmail.com (J.-H. Jung), shehab.ahmed@qatar.tamu.edu (S. Ahmed).

¹ Tel.: +974 4423 0259; fax: +974 4423 0011.

Nomenclature absorbability of cell surface (0.77 for silicon) M air mass modifier α_{ab} temperature coefficient for short circuit current $M_{\rm ref}$ air mass modifier at STC α_{sc} (AK^{-1}) ideality factor n_I density of layer x (kg m⁻³) N_{ς} number of cells in series ρ_{lx} Stefan-Boltzmann constant ideality factor at STC $n_{I,\mathrm{ref}}$ $(5.67 \times 10^{-8} \,\mathrm{Wm}^{-2} \,\mathrm{K}^{-4})$ P_{gen} generated electrical power from PV panel (W) electron charge $(1.602 \times 10^{-19} \text{ C})$ coefficient for air mass modifier a_i ideality factor parameter at STC (eV) $Q_{\rm conv}$ heat flow generated by convection (W) $a_{\rm ref}$ area of layer x (m²) heat generated by electric loss (W) Q_{ele} A_{lx} coefficient for incidence angle modifier Q_{lx} heat flow from layer x (W) b_i total heat capacity of layer x (JK⁻¹) heat flow generated by short wave C_{lx} Q_{sw} specific heat capacity of layer x (Jkg⁻¹ K⁻¹) $C_{p,lx}$ radiation (W) depth of layer x (m) R_{c} d_{lx} lumped series resistance (Ω) E_g energy bandgap (eV) $R_{p,ref}$ lumped shunt resistance at STC (Ω) energy bandgap at reference temperature (1.121 R_p lumped shunt resistance (Ω) $E_{g,T_{\text{ref}}}$ for silicon) (eV) lumped series resistance at STC (Ω) $R_{s,ref}$ S Gtotal irradiance on horizontal surface (Wm⁻²) total incident irradiance (Wm⁻²) $S_{ab,ref}$ G_b beam component of total irradiance on horizontotal absorbed irradiance at STC (Wm⁻²) tal surface (Wm⁻²) total absorbed irradiance (Wm⁻²) S_{ab} diffuse component of total irradiance on hori- T_c cell temperature (K) G_d zontal surface (Wm⁻²) $T_{\rm amb}$ ambient temperature of PV panel (K) irradiance at STC (1000) (Wm⁻²) $T_{c,\mathrm{ref}}$ cell temperature at STC (K) G_{ref} diode forward current (A) T_{lx} borderline Temperature of layer x (K) I_d photo light current (A) U_{lx} overall heat transfer coefficient for layer x I_L output current of a PV panel (A) V_o output voltage of a PV cell (V) I_o $V_{mp,ref}$ diode reverse saturation current (A) voltage of maximum power point at STC (V) I_r $I_{L,\mathrm{ref}}$ photo light current at STC (A) V_{mp} voltage at maximum power point (V) $V_{oc, ref}$ current of maximum power point at STC (A) open circuit voltage at STC (V) $I_{mp,ref}$ $V_{T,\text{ref}}$ thermal voltage at STC (V) I_{mp} current at maximum power point (A) STC standard test condition: irradiance 1000 Wm⁻². diode reverse saturation current at STC (A) $I_{r,\mathrm{ref}}$ Short circuit current at STC (A) AM1.5 spectrum, module temperature 25 °C $I_{sc,ref}$ Boltzmann's constant $(1.381 \times 10^{-23} \text{ JK}^{-1})$ k thermal conductivity of layer x (Wm⁻¹ K⁻¹) k_{lx}

suitable model for PV devices by considering adjustment errors at specific data points (de Blas et al., 2002). The reverse bias model was adopted to explain the breakdown effect of a PV cell with temperature (Alonso-Garcia and Ruiz, 2006). A detailed terminal voltage model of a PV cell was proposed using the five-parameter model (Soto et al., 2006; Chenni et al., 2007). Experimental verification was achieved using mono-crystalline PV modules to evaluate four- and five-parameter models (Celik and Acikgoz, 2007).

The strong correlation between module temperature and electrical terminal characteristics has also prompted significant research into thermal modeling of PV panels. Temperature dependant models of a PV panel were suggested in Sukamongkol et al. (2002), Jones and Underwood (2001), considering heat radiation, heat convection, and power generation. Two dimensional thermal flows for PV panel plates were considered in PV panel models (Ali, 2005; Dehra, 2009). Experimental verification depicting the dependence of panel output power and efficiency on

temperature was achieved using commercial PV modules (Tina and Abate, 2008; Gil-Arias and Ortiz-Rivera, 2008; Skoplaki and Palyvos, 2009).

Advancements in computing technology have allowed the prototyping of novel apparatus to be investigated in a virtual system under a wide range of realistic conditions repeatedly, safely, and economically. A five-parameter PV panel is widely used in literature for PV system energy prediction (Soto et al., 2006). However, the model's solution is transcendental in nature; hence it is not possible to solve it for voltage in terms of current explicitly and vice versa (Hornbeck, 1975). To solve the four- or five-parameter model of a PV panel, numerical methods are required because the terminal voltage or current equation has no exact analytical solution. Using a Lambert W-function, the solution of the PV model can be expressed as an exact solution (Jain et al., 2004; Jain et al., 2006). In addition, parameter mismatch and model error were investigated (Petrone et al., 2007) and optimum load conditions of PV

Download English Version:

https://daneshyari.com/en/article/1550843

Download Persian Version:

https://daneshyari.com/article/1550843

Daneshyari.com