

Available online at www.sciencedirect.com

SciVerse ScienceDirect

Solar Energy 85 (2011) 2843-2855

www.elsevier.com/locate/solener

Modeling and optimization of hybrid solar thermoelectric systems with thermosyphons

Nenad Miljkovic, Evelyn N. Wang*

Device Research Laboratory, 77 Massachusetts Avenue, 3-461B, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

> Received 7 April 2011; received in revised form 10 August 2011; accepted 17 August 2011 Available online 21 September 2011

> > Communicated by: Associate Editor Avi Kribus

Abstract

We present the modeling and optimization of a new hybrid solar thermoelectric (HSTE) system which uses a thermosyphon to passively transfer heat to a bottoming cycle for various applications. A parabolic trough mirror concentrates solar energy onto a selective surface coated thermoelectric to produce electrical power. Meanwhile, a thermosyphon adjacent to the back side of the thermoelectric maintains the temperature of the cold junction and carries the remaining thermal energy to a bottoming cycle. Bismuth telluride, lead telluride, and silicon germanium thermoelectrics were studied with copper–water, stainless steel–mercury, and nickel–liquid potassium thermosyphon-working fluid combinations. An energy-based model of the HSTE system with a thermal resistance network was developed to determine overall performance. In addition, the HSTE system efficiency was investigated for temperatures of 300–1200 K, solar concentrations of 1–100 suns, and different thermosyphon and thermoelectric materials with a geometry resembling an evacuated tube solar collector. Optimizations of the HSTE show ideal system efficiencies as high as 52.6% can be achieved at solar concentrations of 100 suns and bottoming cycle temperatures of 776 K. For solar concentrations less than 4 suns, systems with thermosyphon wall thermal conductivities as low as 1.2 W/mK have comparable efficiencies to that of high conductivity material thermosyphons, *i.e.* copper, which suggests that lower cost materials including glass can be used. This work provides guidelines for the design, as well as the optimization and selection of thermoelectric and thermosyphon components for future high performance HSTE systems.

Keywords: Hybrid solar thermoelectric; Bottoming cycle; Solar thermal; Thermosyphon; STEG

1. Introduction

Efficient renewable energy sources are in significant demand to replace diminishing and environmentally harmful fossil fuels. The combination of commercial and residential buildings as well as the industrial sector currently consumes 72% of the total energy in the US (Davidson, 2005; Kelso, 2009). A significant portion of this energy is used in the form of heat, such as for hot water heaters in homes and food processing in industrial process heat

* Corresponding author. Tel.: +1 617 324 311.

E-mail address: enwang@mit.edu (E.N. Wang).

(IPH) applications, where temperatures range from 50 °C to 1000 °C (Desideri et al., 2009; Demeter et al., 1991; Schnitzer et al., 2007; Lecuona et al., 2009). The abundance of solar energy promises efficient methods to meet the current heating and electricity needs. For example, hot water heaters have been commonly used in households (Han et al., 2010; Zhiqiang, 2005), and large scale solar thermal plants deliver distributed electrical power to cities (Manuel et al., 2002; Pacheco, 2001). In most cases, however, these systems are limited to providing either heat or electricity. More recently, hybrid systems with either photovoltaics or thermoelectrics to generate both electrical power and heat have been investigated. Hybrid photovoltaic-thermal

⁰⁰³⁸⁻⁰⁹²X/\$ - see front matter © 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.solener.2011.08.021

Nomenclature

A	area (m ²)	T_{c}	conder
С	solar concentration factor (-)	c	ture (F
C_p	specific heat capacity (J/kg K)	$T_{s,E}$	thermo
$\hat{C_s}$	pool boiling constant (-)		ture, t
g	gravitational constant (N/kg)	$T_{sat,E}$	thermo
G	incident radiative heat flux (W/m^2)		ture (F
h	heat transfer coefficient $(W/m^2 K)$	$T_{sat,C}$	thermo
h_{fg}	latent heat of vaporization (J/kg)		ture (F
$h_{f,E}$	evaporator thin film evaporation heat transfer	T_{ss}	selectiv
	coefficient $(W/m^2 K)$		ature (
$h_{p,E}$	evaporator liquid metal pool boiling heat trans-	$T_{vl,E}$	thermo
	fer coefficient $(W/m^2 K)$		temper
k	thermal conductivity (W/m K)	$T_{vl,C}$	thermo
L_a	adiabatic section length (m)		temper
L_c	condenser section length (m)	$T_{w,E}$	thermo
L_e	evaporator section length (m)	_	ture (F
L_{f}	evaporator thin film length (m)	$T_{w,C}$	thermo
L_o	total thermosyphon length (m)	-	(K)
L_p	liquid metal pool height (m)	T_{∞}	enviro
L_{te}	thermoelectric leg length (m)	х,у	coordi
$\stackrel{M}{\cdot}$	molecular mass (kg/kmol)		, ,
m	mass flux (kg/m ² s)	Greek s	ymbols
P	pressure (Pa)	α	absort
P_c	critical pressure (Pa)	3	emissi
P_l	liquid pressure (Pa)	η_*	emcier
P_r	reduced pressure (-)	η	emcier
P_{te}	thermoelectric power (w) heat flux (W/m^2)	ρ_R	donaite
q	neat flux (w/m)	ρ	Stafor
Q_{loss}	emissive loss (\mathbf{w}) betteming cycle heat transfer (\mathbf{W})	σ_B	Stefan
Q_{out}	solor host input (W)	σ'	surface
Q_{solar}	solar neat input (w)	σ	tronger
r_i	thermosyphon inner radius (m)	τ	dunam
r _o	ar radius (m)	μ s	uynan liquid
	el facilità (ill)	0	thorm
P te	evaporator wall radial thermal resistance (\mathbf{K}/\mathbf{W})	0	$col(^{\circ})$
	evaporator liquid pool thermal resistance (\mathbf{K}/\mathbf{W})		cal ()
К ₂ Р	evaporator thin film thermal resistance (K/W)	Superse	wint
R3 R.	vapor core axial thermal resistance (K/W)	DC	direct
R_4	condenser film thermal resistance (K/W)	DC HSTE	hybrid
R_{5}	condenser wall radial thermal resistance (K/W)	IISI L IPH	indust
R_{7}	condenser wall axial thermal resistance (K/W)	PV	nhotov
R_{0}	liquid metal thin film evaporation interfacial	PVT	hybrid
118	thermal resistance (K/W)	SS	selectiv
Ro	liquid metal condensation interfacial thermal	TE	thermo
119	resistance (K/W)	ZT	thermo
R	thermoelectric element radial thermal resistance	-	mean
- te	(K/W)		moun
R	gas constant (I/kg K)	Subscri	nts
$\frac{1}{R}$	universal gas constant (I/kmol K)	а	adiaba
S	pool boiling constant (–)	hh	black
t s	thermosyphon wall thickness (m)	c C	conder
T	temperature (K/°C)	e, E	evanor
-		с, ц	e apoi

Γ_c	condenser	outer	wall/	bottoming	cycle	tempera-
	ture (K)					

- osyphon evaporator outer wall temperahermoelectric cold side temperature (K)
- osyphon evaporator saturation tempera-K)
- osyphon condenser saturation tempera-K)
- ve surface/thermoelectric hot side temper-**(K)**
- osyphon evaporator liquid vapor interface rature (K)
- osyphon condenser liquid vapor interface rature (K)
- osyphon evaporator inner wall tempera-K)
- osyphon condenser inner wall temperature
- onment temperature (K)

inates (m)

- btivity (–)
- vity (–)
- ncy (–)
- ncy as $k_w \to \infty$ (–)
- ivity (–)
- $y (kg/m^3)$
- –Boltzmann constant (W/m K⁴)
- te tension (N/m)
- nsation coefficient (-)
- nissivity (–)
- nic viscosity (Pa s)
- film thickness (m)
- osyphon inclination angle from the verti-
- current
- solar thermoelectric system
- rial process heat
- voltaic
- photovoltaic thermal
 - ve surface
- oelectric
- oelectric figure of merit or average value

	adiabatic		
b	black body		
, <i>C</i>	condenser		
, <i>E</i>	evaporator		

Download English Version:

https://daneshyari.com/en/article/1551144

Download Persian Version:

https://daneshyari.com/article/1551144

Daneshyari.com