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H I G H L I G H T S

� New models for FBMG aggregation
efficiency and rate constant have
been derived.

� The models are particularly useful
for application in population balance
equations.

� The models predictions have been
compared with experimental data.
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a b s t r a c t

This paper presents a predictive aggregation rate model for spray fluidized bed melt granulation. The
aggregation rate constant was derived from probability analysis of particle–droplet contact combined
with time scale analysis of droplet solidification and granule–granule collision rates. The latter was
obtained using the principles of kinetic theory of granular flow (KTGF). The predicted aggregation rate
constants were validated by comparison with reported experimental data for a range of binder spray rate,
binder droplet size and operating granulator temperature. The developed model is particularly useful for
predicting particle size distributions and growth using population balance equations (PBEs).

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

It is widely accepted that the engineering of particulate
processes is substantially less well understood than that of fluids.
Two difficulties are frequently encountered: the flow of solids is
generally much more complex than that of fluids and particles can
interact changing their sizes and shapes at almost any point in a

process. As a consequence fully-predictive models of fluidized bed
melt granulation (FBMG) are very rare.

In FBMG molten binder is sprayed onto a bed of suspended
particles. The frequent particle–particle collisions lead to bonding
by solidification of the liquid bridges formed between the indivi-
dual particles. Since the molten binder enters at a point and is
then distributed around the bed, these processes are necessarily
spatially inhomogeneous. The most widely used model for pre-
dicting the particle size distribution (PSD) and growth during
granulation, namely, the population balance equation (PBE),
adopts a lumping approach, with part of the aggregation rate
kernel derived from experiment. An active spray zone (see Fig. 1) is
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proposed in this paper to derive a purely theoretical model for
predicting aggregation efficiency and aggregation rate constant,
taking into consideration the spatially distributed processes.

2. Theory

The central assumption in a PBE model is that the aggregation
occurs as a consequence of binary particle collisions. By analogy to
second order reactions, the rate for this process is given by

ragg ¼ β1;2N1N2 ð1Þ
where ragg is the rate in units of ½m−3 s−1�, β1;2 is the aggregation
kernel for collisions between particles in size classes 1 and 2 in
unit of ½m3s−1�, N1 and N2 are the numbers of particles per unit
volume [#m−3].

Hounslow and Ryall (1988) has shown that β1;2 for FBMG can
be decomposed into a size dependence component and an
aggregation rate constant (β0) such that,

β1;2 ¼ β0ðD1 þ D2Þ2
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where D1 and D2 are the particle sizes of classes 1 and 2. The rate
constant, β0, can be obtained by fitting the PBE predictions of PSD
to the experimental data. Combining Eqs. (1) and (2) gives the
aggregation rate as follows:

ragg ¼ β0ðD1 þ D2Þ2
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In order to develop a theoretically based aggregation rate
constant, Tan et al. (2004) derived an expression for β0 by linking
Eq. (3) with the collision rate obtained from the principles of
kinetic theory of granular flow (KTGF), to give

β0 ¼ ψgo
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where ψ is a parameter representing the aggregation efficiency, θs
and go represent the mixture granular temperature and the radial
distribution function respectively. The latter, go, is a function of the
solid concentration. According to Tan et al. (2004), θs and go can
both be obtained from suitable models, such as that based on the
KTGF, while ψ can be determined experimentally by fitting the
measured particles size distribution into a PBE.

In a previous series of studies we discussed the time scale for
four microscopic events that contribute to the overall aggregation
efficiency of the process. The theoretical models predicting the
time scales of (i) granule–granule collision (Chua et al., 2011a),
(ii) binder droplet spreading (Chua et al., 2011b) and (iii) droplet
solidification (Chua et al., 2011c) have been developed. A graphical

summary of the ranges of these time scales have been presented in
Chua et al. (2011a). In this paper, we make use of these models to
demonstrate that such a theoretical approach can be further
extended to predict the granulation efficiency (ψ) and aggregation
rate constant (β0), two of the most important parameters for
predicting particle size growth and distribution using the popula-
tion balance equation.

2.1. Aggregation rate

In this analysis we are interested in expressing the aggregation
rate in terms of mass instead of volume, i.e. per kg not m3 of bed,
since reference to volume of the bed has little meaning—neither
the actual volume of the bed, nor that of the region where
aggregation occurs. Therefore, we write the mass based rate
summed over the whole fluidized bed as

ragg ¼Ms
dNT

dt
¼ −

1
2

Z
ψrcoll dV ð5Þ

where Ms is the total mass in the bed, NT is the number
concentration per unit mass, ψ is the aggregation efficiency, rcoll
is the rate of granule–granule collision per unit volume and V is
the volume where aggregation takes place.

Various functions for predicting the collision rate have been
reported in the literature (e.g. Kapur and Fuerstenau, 1969;
Goldschmidt, 2001; Darelius et al., 2005). Goldschmidt (2001)
has shown that, within the context of a two-fluid model, the
number of collisions between particles of phases 1 and 2 per unit
volume per unit time can be given by

rcoll ¼ C1;2N1N2 ð6Þ
where the collision rate constant is given by

C1;2 ¼ πD3
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Following Tan et al. (2004), neglecting the divergence of the
particle velocity field and assuming that all the particles are of
equal density, Eqs. (6) and (7) can be combined to give

rcoll ¼ g1;2
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Note that in Eq. (8) we are assuming that 2D1;2 ¼ ðD1 þ D2Þ,
where D1;2 is the separation distance between two colliding
particles D1 and D2 (centre to centre). Substituting Eq. (8) into
Eq. (5) after replacing the volume-based number, N, by the mass-
based number, N (i.e. N¼Nρsεs), gives

ragg ¼Ms
dNT

dt
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2.2. Granulation efficiency

2.2.1. Probability of wetting
We start by assuming that the drops do not overlap and that

the wetted area per particle is equal to a droplet cross-sectional
area multiplied by a constant. It follows that for a particle with n
drops attached to its surface the probability that a contact point is
wet is given by

Pw ¼ n
kwdo
D

� �2

ð10Þ

where do and D are the initial droplet and particle diameters.
kw is a constant relating the initial droplet diameter to the final
diameter after spreading. In Chua et al. (2011b), we have shown

Fig. 1. Schematic representation of the spray zone in a fluidized bed spray melt
granulator.
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