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H I G H L I G H T S

� A criterion is proposed to estimate the critical thickness wood above which the Lambert law is valid.
� A model is proposed to analyze the critical thickness of wood as a function of frequency.
� A model is proposed to analyze the critical thickness of wood as a function of temperature and frequency.
� We have studied the thawing of frozen trembling aspen wood using microwave energy.
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a b s t r a c t

This paper addresses the thawing of frozen wood by micro wave. We consider two power formulations
for the absorbed energy: the correct power dissipation computed from Maxwell's equations and
Lambert's power law equation. The critical thickness above which the two formulations are approxi-
mately equivalent is characterized as an exponential-hyperbolic function of frequency and temperature.
Four Canadian eastern wood species are used: trembling aspen (Populus tremuloides), yellow birch
(Betula alleghaniensis), white birch (Betula paperyfera), and sugar maple (Acer saccharum). The nonlinear
heat conduction problem involving phase changes such as wood freezing is solved by a volumetric
specific enthalpy-based finite element method. Dielectric and thermophysical properties are functions of
temperature and moisture content. For illustration purposes, we considered the thawing of frozen
trembling aspen wood.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Microwave irradiation is a technique in which materials with
poor thermal and electrical conductivity are heated electrically.
Unlike infrared heating, which is strictly a surface phenomenon,
dielectric heating rapidly generates heat within the material. In
fact, materials with poor electrical conductivity can be heated by
microwave only if their molecules are asymmetrically structured.
In the case of wood, the application of an electrical field induces
asymmetry of the water molecules (polarization). Therefore, for
specific frequencies, this causes friction between molecules, which
generates heat within the material. Robust experimental and
numerical tools are needed to predict the temperature profile.
However, only a few published studies have described experi-
mental and mathematical models used to qualify the efficiency of

this technique, and many uncertainties of this technique remain to
be clarified. For instance, it is unknown whether this technique
can penetrate the wood structure (Antti, 1999; James et al., 1985),
or whether it can kill microorganisms and insects (Fleming et al.,
2005; Lewis et al., 2000; McCullough et al., 2005. Moreover, a
number of parameters must be considered to predict microwave
penetration into the wood, including the radiation frequency, the
wood temperature and moisture content, and the dielectric
properties (Fleming et al., 2005).

Microwave heating of frozen wood is a complex process
involving highly nonlinear interactions among the mechanical,
thermal, and electrical properties. This poses a daunting challenge
for numerical simulation, because the combined complexities of
heat and mass transfer, phase change, and thermomechanical and
electromagnetic interactions must be considered (Brodie, 2007;
Rattanadecho and Suwannapum, 2009; Rattanadecho, 2006; Zhu
et al., 2007; Datta et al., 1992; Ohlsson and Bengston, 1971; Swami,
1982; Steinhagen and Harry, 1988; Chen et al., 1993; Zhou et al.,
1995; Ayappa et al., 1991; Ni and Datta, 2002; Datta and
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Anantheswaran, 2001). Generally, heat generation in wood mate-
rial is modeled by Lambert's law, which is valid only for semi-
infinite samples. A rigorous mathematical formulation of the
heating process requires knowing the power flux (Poynting
vector) associated with electromagnetic microwave propagation,
which is a solution of Maxwell's equation for electromagnetic
radiation propagation in dielectric material. In order to model the
microwave heating process, three numerical methods are gener-
ally used to solve the descriptive equations (finite differences,
finite control volume, and finite elements). On this topic, Ohlsson
and Bengston (1971) studied one-dimensional heating and solved
heat transfer equations in a meat block heated by microwaves.
Swami (1982) used a finite difference model to describe heating of
gels with high water and NaCl content. Rattanadecho (2006) used
a finite control volume discretization method to simulate the
heating of liquid layers using a rectangular wave guide and
analyzed the influence of frequency and sample size. However,
when the medium undergoes a phase change (e.g., solid to liquid),
the numerical solution is more difficult due to the presence of one
or more moving boundaries of the solid–liquid phases. In general,
there are two approaches to solve this type of problem: solve the
energy equations for the liquid and solid phases separately, taking
into account the moving boundary (solid–liquid interface), or solve
the energy equation in terms of the enthalpy function. For
microwave heating problems, when a phase change takes place,
Panrie et al. (1991) used time-harmonic Maxwell's equations and
the enthalpy method to model the microwave melting process for
a radially symmetric domain using the finite difference method.
Bhattacharya et al. (2002) analyzed thawing of 1D slabs and 2D
cylinders in the presence of volumetric heat sources due to
microwave propagation within the samples by using the finite
element based enthalpy formulation. Basak and Ayappa (1997)
used the effective heat capacity method to analyze microwave
thawing of materials. Coleman (1990) studied microwave melting
in one space dimension.

In the present study, we examine the effect of constant
attenuation, frequency, and temperature on critical wood thick-
ness for the applicability of Lambert's law in finite sapwood of four
Canadian eastern wood species: trembling aspen (Populus tremu-
loides Michx), yellow birch (Betula alleghaniensis), and sugar maple
(Acer saccharum). We consider two power formulations: the
correct power dissipation computed from Maxwell's equations
and Lambert's power law equation. The critical thickness above
which the two formulations are approximately equivalent is then
characterized as an exponential-hyperbolic function of frequency
and temperature. The nonlinear heat conduction problem invol-
ving phase changes such as wood freezing is solved by a volu-
metric specific enthalpy-based finite element method. Dielectric
and thermophysical properties are functions of temperature and
moisture content (Kanter, 1957). For illustration purposes,
we examine the thawing of frozen trembling aspen wood.

2. Microwave energy absorption and Poynting's theorem

The time-dependent power flow density of an electromagnetic
wave is given by the instantaneous Poynting vector S (Pozar, 2011):

S ¼ 1
2
E � Hn ð1Þ

where E and Hn are the electric field (V m−1) and the conjugate
magnetic field (A m−1), respectively. For an isotropic dielectric
material, we have (see Appendix I):

∇⋅S ¼ −j
ω

2
ðμ H⋅Hn þ εnE⋅EnÞ ð2Þ

where ω (rad/s−1) is the frequency of the incident radiation,
εn (F m−1) is the complex conjugate of the dielectric permittivity
ε and μ (Henries m−1) is the complex permeability:

εðωÞ ¼ ε′ðωÞ−jε″ðωÞ and μðωÞ ¼ μ′ðωÞ−jμ″ðωÞ ð3Þ

The real part of the ε(ω) and μ(ω) represents the material's
ability to stored electrical and magnetic energy, respectively,
whereas their imaginary part represents the electrical energy
dissipation. The negative sign on the right-hand side of (3)
indicates that the amount of energy in the volume decreases
if the net amount of power flowing through the surface is
positive. The power dissipated per unit volume is given by
(see Appendix I):

Pmax ¼ −Reð∇⋅SÞ ¼ 1
2
ωε″ Ej2

�� ð4Þ

In wood materials, the magnetic permeability μ(ω) is generally
approximated by its value μ0 in free space. With this assumption
and the electroneutrality of wood ∇⋅ ∇⋅Eð Þ ¼ 0ð Þ we deduce, from
the Maxwell's equations the expression of Helmholtz's equation of
wave propagation:

∇2E−γ2E¼ 0 ð5Þ

where EðrÞ ¼ eþiωt ½Eðr; tÞ� and γ is the constant complex propaga-
tion:

γ ¼ αþ jβ ð6Þ

β is the attenuation constant and α is the phase (a constant). These
parameters are related to the dielectric properties of the material
and frequency of radiation by:

α¼ ω

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε′
2
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2δ

p
þ 1Þ

r
ð7Þ

β¼ ω

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε′
2
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2δ

p
−1Þ

r
ð8Þ

c¼ 1 ffiffiffiffiffiffiffiffiffiffi
μ0ε0

p is the speed of light (ε0 is the dielectric permittivity
(¼8.8541�10−12 F/m) of the free space). The term δ (¼tg−1(ε''/ε'))
is the dielectric loss angle. The attenuation (a constant), β, controls
the rate at which the incident field intensity decays into a simple.
β−1 is known as the penetration depth. The phase (a constant)
α represents the change of phase of the propagation radiation and
is related to the wavelength of radiation by λ¼2π/α.

2.1. Uniform plane wave propagation and power dissipation

Consider one-dimensional propagation energy through the
thickness ‘L’ of the sample wood material. The incident microwave
is assumed to be normal on opposite face of the sample. (see
Fig. 1). The wave has only a z-component of electric field which is a
function of the parameter y. Eq. (5) is reduced to the following:

d2Ez
dy2

az−γ2Ezaz ¼ 0; f or 0≤y≤L ð9Þ

Ez

Hx
y

L

region 2
region 1 region 3

Fig. 1. Schematic of layered sample exposed to plane microwave.

F. Erchiqui / Chemical Engineering Science 98 (2013) 317–330318



Download	English	Version:

https://daneshyari.com/en/article/155131

Download	Persian	Version:

https://daneshyari.com/article/155131

Daneshyari.com

https://daneshyari.com/en/article/155131
https://daneshyari.com/article/155131
https://daneshyari.com/

