

SOLAR ENERGY

Solar Energy 85 (2011) 1511-1518

www.elsevier.com/locate/solener

A solar cavity-receiver packed with an array of thermoelectric converter modules

Clemens Suter a, Petr Tomeš b, Anke Weidenkaff b, Aldo Steinfeld a,c,*

a Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
b Solid State Chemistry and Catalysis, EMPA, 8600 Duebendorf, Switzerland
c Solar Technology Laboratory, Paul Scherrer Institute, 5232 Villigen, Switzerland

Received 10 January 2011; received in revised form 28 March 2011; accepted 8 April 2011

Communicated by: Associate Editor Robert Pitz-Paal

Abstract

We report on the design of a solar cavity-receiver packed with an array of thermoelectric converter (TEC) modules, which enables efficient capture of concentrated solar radiation entering through a small aperture. A 1 kW demonstrator (proof-of-concept) containing 18 TEC modules, each consisting of Al₂O₃ absorber/cooler plates, and *p*-type La_{1.98}Sr_{0.02}CuO₄ and *n*-type CaMn_{0.98}Nb_{0.02}O₃ thermoelements, was subjected to peak solar concentration ratios exceeding 600 suns over its aperture. The TEC modules were operated at 900 K on the hot side and 300 K on the cold side. The measured solar-to-electrical energy conversion efficiency was twice that of a directly irradiated TEC module. A heat transfer model was formulated to simulate the solar cavity-receiver system and experimentally validated in terms of open-circuit voltages measured as a function of the mean solar concentration ratio. Vis-à-vis a directly irradiated TEC module, the cavity configuration enabled a reduction of the re-radiation losses from 60% to 4% of the solar radiative power input. Theoretical considerations for TEC with figure-of-merit higher than 1 indicate the potential of reaching solar-to-electrical energy conversion efficiencies exceeding 11%.

© 2011 Elsevier Ltd. All rights reserved.

Keywords: Thermoelectric converter; Concentrated solar energy; Heat transfer; Radiation; Cavity; Receiver

1. Introduction

A thermoelectric converter (TEC) comprises p-type and n-type semiconductor legs sandwiched between two ceramic hot/cold plates and connected thermally in parallel and electrically in series (Goldschmid and Nolas, 2001; Min, 2006; Rowe, 2006). The temperature gradient across the legs induces a voltage due to the Seebeck effect. The TEC performance is characterized by its figure-of-merit, $ZT = S^2T/(\rho\kappa)$. However, due to the relatively low heat-

to-electricity conversion efficiencies for $ZT \leq 1$ of ceramic materials, TECs have not yet found widespread applications at high temperatures (Riffat and Ma, 2003). With the advent of novel functional ceramic materials, high-temperature thermal reservoirs are being considered, e.g. concentrated solar energy (Naito et al., 1996; Tomeš et al., 2008; Weidenkaff et al., 2008). The design of a solar cavity-receiver for supplying high-temperature heat to a thermionic/thermoelectric system has been proposed and temperature distributions were measured on a prototype made of graphite (Naito et al., 1996). The direct conversion of concentrated solar radiation into electricity at high temperatures has been recently experimentally demonstrated (Tomeš et al., 2008, 2010). A heat transfer analysis of directly-irradiated single TEC modules has shown that

^{*} Corresponding author at: Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland.

E-mail addresses: suterc@ethz.ch (C. Suter), petr.tomes@empa.ch (P. Tomeš), anke.weidenkaff@empa.ch (A. Weidenkaff), aldo.steinfeld@ethz.ch (A. Steinfeld).

Nomenclature surface, m² iteration step Aa aperture width, m δ_{ki} Kronecker delta b plate thickness, m total emissivity, error \tilde{C} solar concentration ratio solar-to-electricity efficiency η d chemical potential, J mol distance between legs, m μ charge of electron / charged particles, Coul electrical resistivity, Ω m eρ Stephan-Boltzmann constant, W m⁻² K⁻⁴ F_{k-j} view factor from surface k to jheat transfer coefficient, W m⁻² K⁻¹ h solar irradiation, W m⁻² I **Subscripts** current density, A m⁻² cold C 1 leg length, m hot h Llength of cavity-receiver, m i, j finite volume indices thermal conductivity, W m⁻¹ K⁻¹ km middle number of p/n-type leg pairs M OCopen-circuit number of modules Nsurroundings ∞ P electric power output, W plate length, m p Dimensionless group heat flux, W m⁻² Nu Nusselt number solar radiative power input, W Q_{solar} Ra Rayleigh number S Seebeck coefficient, V K⁻¹ ZTFigure-of-Merit Ttemperature, K W width of cavity-receiver, m Abbreviations w width of legs, m CPC compound parabolic concentrator Vvoltage, V DNI direct normal irradiation HFSS high flux solar simulator MC Monte Carlo Greek letters absorptivity **TEC** thermoelectric converters $\alpha_{apparent}$ apparent absorptance

60% of the incident solar radiation is lost by re-radiation (Suter et al., 2010).

In this paper, a solar cavity-receiver is packed with TEC modules that are directly exposed to concentrated solar radiation. As it will be shown in the analysis that follows, the advantages of the proposed design are two-folded: (1) the geometrical configuration allows for efficient capture of concentrated solar radiation and significant reduction of the re-radiation losses; (2) the direct irradiation of the TEC modules allows efficient heat transfer to the site, bypassing the limitations associated with conduction heat transfer through the walls of an opaque solar absorber (i.e. limitations imposed by the materials with regards to maximum operating temperature, thermal conductivity, and resistance to thermal shocks). A 1 kW demonstrator is fabricated as a proof-of-concept of the proposed configuration. A heat transfer model is formulated and validated in terms of open-circuit voltages measured as a function of the mean concentration ratio over the aperture, and further applied to analyze the thermal energy partition. In this study, no attempt was undertaken to optimize the materials of the TEC modules for improving their Figure-of-Merit.

2. Heat transfer model

The solar cavity-receiver configuration is shown schematically in Fig. 1. It consists of a rectangular parallelepiped (box) with a windowless rectangular aperture for the access of concentrated solar irradiation. Because of multiple internal reflections, the cavity's apparent absorptance¹ $\alpha_{apparent}$ exceeds the inner surface absorptivity α and, consequently, increases its ability to absorb incoming irradiation. $\alpha_{apparent}$ has been calculated for cylindrical, conical, and spherical geometries having diffusely and specularly reflecting inner walls (Lin and Sparrow, 1965; Steinfeld, 1991; Siegel and Howell, 2002). Smaller apertures reduce re-radiation losses but intercept less sunlight. Consequently, the optimum aperture size becomes a compromise between maximizing radiation capture and minimizing radiation losses (Steinfeld and Schubnell, 1993). To some extent, the aperture size may be reduced with the help of non-imaging secondary concentrators, e.g. compound par-

¹ Fraction of energy flux emitted by a blackbody surface stretched across the aperture that is absorbed by the cavity walls.

Download English Version:

https://daneshyari.com/en/article/1551457

Download Persian Version:

https://daneshyari.com/article/1551457

<u>Daneshyari.com</u>