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c Multiphase model capable of accurately predicting hydrodynamics of fluid flow.
c Finite element implementation of phase field model applied to simulate Taylor flow.
c Addresses effect of phase field parameters for mobility and interface thickness.
c Numerical Taylor bubble length compared with experimental and empirical data.
c Gas void fraction varied linearly with volumetric flow ratio at all diameters.
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a b s t r a c t

Multiphase heat and mass transfer in microscale devices is a growing field of research due to the

potential of these devices for use in various engineering applications. Before the heat and mass

transport phenomena in such systems can be modeled, the hydrodynamics of adiabatic multiphase

flow, in the absence of specie transport across interfaces, must be accurately predicted. In the present

paper, a finite element implementation of the phase field method is applied to simulate Taylor flow in

mini/microchannels. Channels with characteristic dimensions ranging from 100 to 500 mm are modeled

and criteria present in the literature for domain discretization are assessed. The effects of phase field

parameters, namely mobility and interface thickness, on the predicted flow features are discussed. The

predicted Taylor bubble lengths are compared against empirical correlations as well as available

experimental data in the literature. The predicted gas void fraction data for different channel

dimensions are compared with numerous experimental studies. The present results indicate a linear

variation of gas void fraction with respect to volumetric flow ratio for all channel sizes.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Microscale technologies are quickly penetrating new application
areas due to their proven potential for process enhancement and/or
equipment size/volume reduction in diverse engineering applica-
tions. When optimally designed, the inherent higher surface area to
volume ratio of microscale systems substantially enhances heat and
mass transfer while keeping pressure drops at moderate levels.
Before the heat and mass transport phenomena in such devices can
be modeled, however, the hydrodynamics of adiabatic multiphase
flow in the absence of species transport across interfaces must be
accurately predicted. This is because the flow features at the

microscale differ from those at larger length scales and therefore
accurate prediction of the flow field directly results in improved
accuracy of the predicted heat/mass transport phenomena.

On the experimental front, there are many published works,
starting from the early studies of Fairbrother and Stubbs (1935),
Bretherton (1961) and Taylor (1961), to more recent studies that
primarily focus on microscale flows. Comprehensive reviews of
these works have been presented by Ghiaasiaan and Abdel-Khalik
(2001), Kreutzer et al. (2005), Angeli and Gavriilidis (2008), Shao
et al. (2009) and Gupta et al. (2010). In general, two-phase flow
patterns can be classified into the surface tension dominated type,
comprising Taylor (or slug) and bubbly flows; the transitional
type, comprising churn and Taylor-annular flows; and the inertia
dominated type, comprising dispersed and annular flows. Among
these flow patterns, Taylor flow (Davies and Taylor, 1950) is
characterized by several features that renders it an optimum
choice for assessing the performance of numerical modeling
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approaches. It consists of gas bubbles of length typically larger
than the characteristic dimension of the channel and separated by
liquid slugs. A thin film of liquid separates the gas bubble from
the channel wall. Recirculating velocity components are present
within the liquid slugs, as seen from the moving frame of
reference. Taylor flow has also been a dominant research interest,
especially for microchannel heat exchangers and reactors on
account of enhanced convective mixing phenomena, as described
by Salman et al. (2004). For the purposes of this paper, we will
define minichannels as channels having characteristic dimensions
between 200 mm and 3 mm and microchannels as those between
10 and 200 mm (Kandlikar and Grande, 2003).

The present work studies the application of the phase field
method to numerical simulation of Taylor flow in mini/micro-
channels. Select simulations have also been performed using an
alternative volume of fluid (VOF) model for comparison purposes.
The present paper is part I of a two-part study. Part I focuses on
Taylor bubble formation and presents an analysis of the effects of
the phase field parameters on Taylor bubble length and gas void
fraction. Disagreement in the literature over linear vs. non-linear
trends for gas void fraction are reviewed and compared against
the present predictions to validate the numerical model. Part II of
this work (Ganapathy et al., 2013) is devoted to modeling of wall
adhesion and modeling of thin liquid films. The flow field,
pressure distribution and the effect of channel inlet configuration
are analyzed.

2. Brief review of relevant literature

Various models have been developed for multiphase systems and
have been applied towards two-phase flow in both minichannels and
microchannels. The VOF method (Hirt and Nichols, 1981), which has
proven to be the most popular, and the level set method (Osher and
Sethian, 1988; Sussman et al., 1994), belong to the class of diffuse-
interface modeling approaches. They are primarily based on the
approximation of surface tension forces in the interfacial region as a
body force, using the continuum surface force (CSF) formulation of
Brackbill et al. (1992). These approaches have been implemented in
numerous studies including Taha and Cui (2004), Qian and Lawal
(2006), Liu and Wang (2008), Kumar et al. (2007), Carlson et al.
(2008), Fang et al. (2008), Lakhehal et al. (2008), Chen et al. (2009),
Gupta et al. (2009), Krishnan et al. (2010), Santos and Kawaji (2010),
Asadolahi et al. (2011, 2012). Likewise, the front tracking model by
Unverdi and Tryggvason (1992) is also a diffuse-interface formulation,
wherein the center of the interface is marked by following the
advection of control points (Jacqmin, 1999). The surface tension
forces are estimated from the positions of the control points and
fluid properties across the interface varies over multiple cells.

The phase-field method also belongs to the class of diffuse
interface techniques but governs the interface based on the fluid
free energy. The free energy density is comprised of the gradient
energy and the bulk energy density (van der Waals, 1893). Cahn
and Hilliard (1959) defined the phase-field variable, f, which is
considered as a measure of phase. It assumes two distinct values
in either phase and undergoes a rapid smooth change across the
interface. In the interfacial region, the two phases are considered
to be mixed and are thereby associated with a mixing energy.
An implementation of the phase field method was presented by
Jacqmin (1999), following which several others have presented
their modifications to deal with different types of systems. Among
these, the work of Yue et al. (2004) is suitable for the present
work and is therefore reviewed here.

Based on van der Waals’ theory, the expression for mixing
energy density is given by Eq. (1). By considering a double-well
potential for f0(f), as given by Eq. (2), the Ginzburg–Landau form

of mixing energy density is obtained (Eq. (3)). This mixing energy
adds to the total free energy density of the system. The first and
second terms on the right side in Eq. (3) represent the gradient
energy and bulk free energy density, respectively. l is the
magnitude of mixing energy and x scales with the thickness of
the interface.
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The rate of change of free energy with respect to the phase
field variable, f, yields the chemical potential of the system, G,
given by Eq. (4). The chemical potential is zero at an interface at
equilibrium.
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By integrating Eq. (4) once, and in conjunction with the conditions
specified by Eq. (5), we obtain Eq. (6). The solution of Eq. (6) gives the
equilibrium profile for f(x), which is reported by Eq. (7).
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The diffuse mixing energy in the interfacial region must be
equal to the traditional surface energy (Eq. (8)). Eqs. (7) and (8)
together, result in the final expression for interfacial tension,
given by Eq. (9), which corresponds to the sharp interface
formulation while the limit of x tending to zero.
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Based on the above formulation, Yue et al. (2004) derived the
following governing equations for the phase field approach to
model multiphase flows.
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As noted by Jacqmin (1999), the phase field governing equa-
tions are a function of the time scale of Cahn–Hilliard diffusion, g.

g¼ wx2
ð12Þ

As per the definition in Eq. (12), the functional dependence of g
on two user-defined parameters: mobility, w, and interface thick-
ness, x, posed difficulties on account of the absence of definitive
guidelines on their selection which are to be taken into consid-
eration while determining the element size, h. Subsequently, a
criterion, hrx, was proposed by Yue et al. (2006), and further, the
h/x ratio was varied from 0.5 to 1 in order to ensure that the
region occupied by the interface would be sufficiently resolved
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