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a b s t r a c t

We present a method for modeling nonparabolicity effects (NPE) in quantum nano-
structures in presence of external electric and magnetic field by using second order
perturbation theory. The method is applied to analysis of quantum well structure and
active region of a quantum cascade laser (QCL). This model will allow us to examine the
influence of magnetic field on dipole matrix element in QCL structures, which will provide
a better insight to how NPE can affect the gain of QCL structures.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Nonparabolicity effects (NPE) in the conduction band (CB) of a semiconductor quantum well (QW) material have an
essential role in modeling of electronic structure of multiple QW structure such as quantum cascade laser (QCL). By using
14-band kp calculation presented in [1], Ekenberg in [2] determined the coefficients in the expansion of the dispersion
relation up to the fourth order in wavevector. This results in a forth order differential equation with boundary conditions
obtained by double integration, which fulfill the requirement for probability current conservation [3]. In [4] the authors
presented the model from [2,3] and its application to QCL structures by using transfer matrix method (TMM). Modeling of
NPE mathematically represents a nonlinear eigenvalue problem, thus it is preferable to develop an approximate solution.

QCL structures are powerful light sources emitting frommid-infrared (MIR) to THz frequencies that have turned out to be
efficient and reliable in free-space communications, medical diagnostics, and chemical sensing [5e9]. By engineering of the
active region, it is possible to obtain wide scope of operating wavelengths from 3 mm up to 360 mm [10,11]. The lasing
wavelength is defined by separation of laser energy states, and for THz frequencies the energy difference is very small (around
10 meV) and thus any shift in energy can make modeling of these structures more demanding.

Development of THz QCL structures also included application of external magnetic field due to the interest to cover lower
frequencies and allow better temperature performance [12e14]. Application of magnetic field causes Landau discretization of
energy states in QCL which suppresses non-radiative intersubband scattering and allows significant decreasing in threshold
current [15], operation on low frequencies [16] and on higher temperatures [17]. Due to the increased gain and lower
threshold, application of magnetic field can highly improve QCLs which don’t performwell without it. This allows possibility
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for experimental confirmation without growth challenging proposals based on quantum dot superlattices. This allows
possibility for experimental confirmationwithout growth challenging proposals, with expected formation of strongly coupled
electron-phonon polarons, based on quantum dot superlattices [18e20].

Performance of magnetic field assisted structures can be even more enhanced in non-GaAs/AlGaAs structures such as
InGaAs/GaAsSb [21] and InGaAs/AlInGaAs [22] where NPE are stronger due to the lower band gap which raises the signifi-
cance of their modeling.

In this paper we use the model from [2e4] and apply the second order perturbation theory in order to model energy
corrections more accurately. In [2], Ekenberg applied first order perturbation theory for energies and authors in [4] only used
unperturbed Hamiltonian from [2], while in this paper we will present a more precise treatment through the second order
perturbation theory. We will apply this model to QW structure without the presence of external electric field which yields
analytic solution, and then consider QCL structure for which thismodel can have a great importance.Wewill also consider the
first order correction for the wavefunctions and this will allow us to study the effect of magnetic field on dipole matrix
element, or in another sense, on the gain of QCL.

2. Theoretical consideration

We will focus on the Hamiltonian given in [2] in the presence of magnetic field, which can be written as

bH ¼ bHNP0 þ bHNPbHNP0 ¼ bH0 þ bH 0

bHNP ¼ ð2a0ðzÞ þ b0ðzÞÞ*
1
2

�bkx; bky�2

þ a0ðzÞ
�bk4x þ bk4y�

bH0 ¼ bk2za0ðzÞbk2z þ ħ2

2
bkz 1
m*ðzÞ

bkz þ VðzÞ

bH 0 ¼
�
jþ 1

2

� d� 1
MðzÞ

�
eBħd� 1

MðzÞ
�

¼ 1
m*ðzÞ þ

2

ħ2
bkzð2a0ðzÞ þ b0ðzÞÞbkz

(1)

Here, bHNP0 represents the part of the Hamiltonian bH; i:e: bHNP0 ¼ bH bkjj ¼ 0
� �

. bHNP can be treated with the second order
perturbation theory (first correction vanishes) and this was done in [2]. In this paper we focus on bHNP0, and apply the second
order perturbation theory. Hence bHNP0 can be represented as a sum of unperturbed Hamiltonian bH0 and the perturbed one bH ’.
The coefficients a0 and b0 are nonparabolicity parameters given in [2], B is the magnetic induction of external magnetic field,
V(z) is the potential of the structure, bkx; bky; bkz are the wavevector components operators, m*(z) is the effective mass at the
bottom of conduction band and j is the Landau level index.

The Hamiltonian in (1) operates on envelope wavefunction hn(z) and we treat bHNP0 and bHNP separately. For bHNP0 we first
solve the eigenvalue problem with unperturbed Hamiltonian bH0hn0 ¼ E 0ð Þ

n hn0 (index 0 denotes unperturbed values, while
n ¼ 1,2, … represent bound state energy indices) and use the wavefunctions hn0(z) as a basis for perturbation theory. First
order correction for energy is given in [2] as
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Second order correction for energy can be determined as
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