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tum dot. We have calculated the energy eigenvalues for both ground and first excited sates
under the assumption of Gaussian confining potential. The binding energies for three
dimensional (3D) and two dimensional (2D) quantum dots are calculated. We show their
dependence on dimensionality, dot radius and potential confinement. Our present numer-
ical results show quantitative and qualitative very good agreement with those results
obtained by diagonalization, Numerov’s integration, and Hartree-Fock methods.
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1. Introduction

Advances in modern technology of semiconductor physics has allowed to reduce the effective dimension from
three-dimensional bulk materials to quasi-zero dimensional quantum dot structures, where carries confinement can be
made by artificial potentials at the nano scale limit in all the three spatial directions (three-dimensional quantum dot)
and in two spatial directions (two-dimensional quantum dot). Therefore, energy in such structures is discrete, as in the nat-
ural atoms and it depends strongly on its size. Quantum dot structures have attracted considerable attention both experi-
mentally and theoretically [1-12].

Impurities play an essential role in the semiconductor physics, where their presence can dramatically change electronic,
optical and transport properties of quantum devices [13]. The Schrédinger equation for the hydrogenic impurity has been
solved exactly [14-17]. Zhu et al. [14,15] solved the finite potential well for impurity in the center of spherical quantum
dot SQD and obtained the exact solutions by using the method of series expansion. Chuu et al. [16] studied the hydrogenic
impurity state energies using exact solution of the Hamiltonian for quantum dots and quantum wires by means of Whittaker
function and scattering Coulomb wave function. The fine structure of the energy levels for hydrogenic impurity located in the
center of a spherical quantum dot was calculated using exact solution for finite potential well [17]. Gharaati and Khordad
used a modified Gaussian potential to calculate energy levels for spherical quantum dot within effective mass approximation
[18].

The variational approach has been also used to calculate the binding energies of hydrogenic impurity in quantum dot
[19-21]. The binding energies were calculated for shallow donors and acceptors in a spherical GaAs-Ga;_,Al,As quantum
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dot for both a finite barrier and an infinitely high barrier [19]. The screened donor energies in spherical quantum dot under
parabolic potential were studied [20]. Porras-Montenegro and Perez-Merchancano [21] used the variational approach within
the effective-mass approximation to calculate the binding energies of hydrogenic impurity in quantum dot. Boda et al. [22]
investigated the Gaussian confinement of hydrogenic donor impurity by a very simple variational wave function.

The perturbative approach was also used to calculate the binding energies in quantum dot structures. The binding ener-
gies of the ground and a few higher exited states for both infinite and finite potential wells as a function of well width and
barrier height is calculated using a strong perturbation method within the effective-mass approximation [23]. Bose and
Sarkar [24-26] used perturbation method to calculate the energy levels and binding energies of a shallow hydrogenic impu-
rity in SQD with different potential confinement shapes.

In this paper we shall apply the shifted 1/N expansion proposed by Sukhatme and Imbo [27,28] to calculate the spectra of
an electron and a donor in quantum dots. It is a powerful tool of solving the Schrédinger equation for spherical symmetric
potentials [29-32]. Also, it is non-perturbative and can hence be used in problems which do not necessarily involve small
coupling constant. It is simple and gives accurate eigenvalues without dealing with wave function of a particle. It was
extended successfully to relativistic potentials [33-36]. In this approach, the calculations are carried out for states with arbi-
trary quantum numbers (the principal and orbital quantum numbers n and ¢, respectively) using forth-order perturbation
theory in the shifted expansion parameter 1/k, where k = N +2¢ — a. Here N is the number of spatial dimensions and (a)
is a suitable shift parameter which will be discussed later.

The shifted 1/N expansion has already been used to study various systems, such as two-dimensional magnetoexcitons
[37], shallow donor impurities [38], two-electron spherical quantum dot [39], and two interacting electrons in
two-dimensional quantum dots with the presence of magnetic field [40].

This paper is organized as follows. In Section 2, we state the Hamiltonian of donor impurity centered at quantum dot and
formulate the shifted 1/N expansion method for a symmetric attractive Gaussian potential V(r). In Section 3, we present the
numerical energy states and binding energies calculations for hydrogenic donor impurity in both two-dimensional 2D (cir-
cular) and three-dimensional 3D (spherical) quantum dots. Finally, the conclusions are provided in Section 4.

2. Theory and method of calculation

Within the framework of an effective-mass approximation, the standard Hamiltonian of an electron in the presence of a
hydrogenic donor located at the center of a quantum dot can be written as follows:

HO:—V2—7+V(r) (1)

where r represents the position coordinate of the electron, r = (x,y) and r = (x,y,z) for the 2D and 3D systems, respectively.
The second term is the coulomb interaction between the donor electron and the hydrogenic nucleus, w = 0 or 1 refers the
absence or presence of donor atom, respectively. V(r) being the confinement potential.

The confinement potential V(r) is assumed to be in the form of a symmetric attractive Gaussian potential and given by
[41]

V(r) = —Voexp(—1?/2R?) 2)

where V, the depth of the potential well. R is the range of the confinement potential, which corresponds to the radius of the
QD. This model potential is a good qualitative appropriate and realistic one due to its finite depth and continuity at the QD
boundaries. Also, it goes smoothly to zero as r — co. The Gaussian potential has a parabolic shape near the quantum dot cen-
ter (k< 1); V(r)=-Vo+ VO% = —Vo +imwdr?, wy is the frequency of the harmonic oscillator. By comparison, we get
w} = Yo, — 20 which gives the Gaussian exponent 4 = ;& [42].

Following the work of Imbo et al. [28] using 1/N expansion method, we begin step by step calculations by formulating the
radial Schrodinger equation for an arbitrary spherical potential V(r) as
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where k =N +2¢. N being the number of spatial dimensions, ¢(¢+ N — 2)h? being the eigenvalue of the square of the
N-dimensional orbital angular momentum.

In terms of the shifted variable k = k — a (a is a shifted parameter), we rewrite Eq. (3) as [28]
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where Q is a constant which rescales the potential (in large k limit) and will be determined below. The energy eigenvalues
are given by an expansion in powers of 1/k.
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