

Contents lists available at ScienceDirect

Superlattices and Microstructures

journal homepage: www.elsevier.com/locate/superlattices

Facile synthesis of Mn₂O₃ hollow and core-shell cube-like nanostructures and their catalytic properties

Superlattices

霐

Ling Liu^{a,b,*}, Xiaojun Zhang^c, Ruiyu Wang^{a,b}, Jianzhou Liu^c

^a Key Laboratory of Coal-Based CO₂ Capture and Geological Storage of Jiangsu Province, China University of Mining and Technology, Xuzhou 221008, People's Republic of China

^b Low Carbon Energy Institute, China University of Mining and Technology, Xuzhou 221008, People's Republic of China ^c School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, People's Republic of China

ARTICLE INFO

Article history: Received 26 March 2014 Accepted 28 March 2014 Available online 16 April 2014

Keywords: Hollow nanostructures Growth from solutions Manganese oxides Nanomaterials Catalysis

ABSTRACT

Manganese carbonate (MnCO₃) hollow cube-like nanostructures were synthesized via a facile polyol process and then thermal converted to phase-pure manganese oxide (Mn₂O₃). Based on the structural analysis of MnCO3 precursor obtained at different reaction times, a mechanism of inside-out Ostwald ripening was proposed to account for the formation of the hollow nanostructures. An annealing treatment at 500 °C with a ramping rate of 3 °C min⁻¹ was utilized to convert the MnCO₃ precursor into Mn₂O₃. The manganese oxide powder products possessed mesoporosity and essentially preserved the pristine morphology of the MnCO₃ precursor. The products were characterized by X-ray powder diffraction (XRD), and field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), Fourier transform infrared spectrometry (FT-IR), Thermal gravimetric analyze (TGA), X-ray photoelectron spectroscopy (XPS), and Brunauer-Emmett-Teller (BET). Furthermore, relative to Mn₂O₃ core-shell cube-like microstructures, the mesoporous hollow cubes exhibited a higher catalytic activity towards CO oxidation.

© 2014 Elsevier Ltd. All rights reserved.

E-mail address: liulingsd@gmail.com (L. Liu).

http://dx.doi.org/10.1016/j.spmi.2014.03.050

0749-6036/© 2014 Elsevier Ltd. All rights reserved.

^{*} Corresponding author at: Low Carbon Energy Institute, China University of Mining and Technology, Xuzhou 221008, People's Republic of China. Tel.: +86 516 83883196; fax: +86 516 83883501.

1. Introduction

Recently, inorganic hollow micro/nanostructures with remarkable interior space have attracted considerable attention owing to a wide range of applications in chemical reactors, drug delivery, catalysis and sensors [1-4]. Because the properties of hollow structures could be tuned by tailoring their shape and crystallization, there has been increasing interest in the controlling synthesis of hollow structures with non-spherical morphologies such as polyhedra, ellipsoids and cones. Compared to spherical counterparts, the synthesis of hollow structures with well-defined non-spherical shapes remained a significant challenge to materials scientists [5]. Soft templates such as surfactant micelles and emulsion droplets, do not assume well-defined non-spherical shapes in order to minimize the interfacial energy. Even with hard templates, preparation of non-spherical hollow structures introduces additional challenges. These range from the difficulty in forming a uniform coating around surfaces with large variation in curvature to the paucity of available non-spherical templates for the synthesis. Due to these difficulties, reports on synthesis of non-spherical hollow structures are rare. Thus, the search for template-free, simple, mild, high-yield and environmentally friendly methods to synthesize different inorganic hollow structures is still a significant challenge. In the past decade, various physical phenomena such as oriented attachment [6], Ostwald ripening [7] and Kirkendall effect [8] have been employed in a number of one-pot template-free methods for fabrications of hollow inorganic nanostructures. Among them, mass transport via Ostwald ripening has been proven to be a facile approach to generate symmetric and/or asymmetric interior spaces for inorganic nanostructures [9-11].

Manganese oxides have been the subject of fascinating interest due to their unique properties and widespread potential applications such as dry-cell batteries [12,13], catalysts [14-18], water-purifying agents [19] and so on. Many novel synthetic routes have been employed to make micro/nanosized manganese oxides with different sizes, shapes and morphologies [19–26]. Among them, a two-step process is often adopted. Solid precursors containing Mn are first prepared and then converted to manganese oxide. In particular, MnCO₃ have been demonstrated to be effective precursors to synthesize manganese oxide. Zhao et al. synthesized nanoporous γ -MnO₂ via a facile route using a hydrothermal treatment and sequential thermal decomposition of MnCO₃ [27]. Fei et al. reported a simple controlled preparation of hierarchical hollow microspheres and microcubes of MnO₂ nanosheets through self-assembly with a MnCO₃ crystal-templating process [28]. Cao et al. synthesized various Mn₂O₃ hollow structures, such as spheres, cubes, ellipsoids, and dumbbells via a MnCO₃ precursor route [29]. We also prepared MnO2 and Mn2O3 hollow dumbbells using MnCO₃ hollow microstructures as a precursor template [30]. However, the number of reports on one-pot synthesis of non-spherical hollow structures of this class of compound intermediates is significantly limited because of the paucity of non-spherical templates and difficulty in forming uniform coatings around high-curvature surfaces. Herein, we developed a facile process for controlled synthesis of MnCO₃ hollow cube-like nanostructures using EG as the solvent. The as-obtained MnCO₃ can be thermal converted to phase-pure Mn₂O₃ maintaining their pristine shapes essentially unchanged. The formation mechanism of the hollow structures can be attributed to an inside-out Ostwald ripening process. As an example of potential applications, the as-obtained hollow nanostructures were used as catalyst in CO oxidation and exhibited relatively high activity.

2. Experimental

2.1. Preparation

All chemicals were of analytical grade and used as received without further purification. In a typical synthesis, $MnCl_2 \cdot 4H_2O$ (1.6 g), urea (0.5 g), deionized water (H_2O , 1 mL) and poly(vinyl pyrrolidone) (PVP, K-30; 0.4 g) were added to ethylene glycol (EG, 50 mL) in a 150 mL round flask. Then the mixture was stirred with a magnetic stirrer bar to give a clear solution and heated to refluxing temperature (ca. 190 °C) under the ambient pressure. About 20 min later, a white precipitate began to appear, indicating the formation of $MnCO_3$. The solution was heated for another 60 min to ensure the formation of

Download English Version:

https://daneshyari.com/en/article/1553500

Download Persian Version:

https://daneshyari.com/article/1553500

Daneshyari.com