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a b s t r a c t

This paper presents an effective and feasible eigen-energy scanning
method to solve polynomial matrix eigenvalues introduced by 3D
quantum dots problem with band non-parabolicity. The pyramid-
shaped quantum dot is placed in a computational box with uni-
form mesh in Cartesian coordinates. Its corresponding Schrödinger
equation is discretized by the finite difference method. The inter-
face conditions are incorporated into the discretization scheme
without explicitly enforcing them. By comparing the eigenvalues
from isolated quantum dots and a vertically aligned regular array
of them, we investigate the coupling effect for variable distances
between the quantum dots and different size.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Nanoscale semiconductor quantum dots (QDs) have been investigated extensively in science [1–3]
and for applications [4–6]. Besides theoretical and experimental methods, numerical simulation can
offer insights into the electronic and optical properties of quantum dots [7,8]. There is a wide range
of numerical methods: expressing the wave function as a series of orthogonal functions [9], Fourier
expansion [10], plane wave expansion [11], k � p perturbation theory [12], finite element method
[13], finite differences [14] and so on. When moving to higher dimensions, the methods based on
Fourier-type expansions and direct diagonalization become expensive in terms of both memory and
CPU time. The finite difference method, simple, flexible and portable, has found widespread applica-
tion in scientific and technical computation. When dealing with 3D quantum structures, especially if
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taking the spin-orbit split-off effect into account, the CPU time and memory resources soon get ex-
hausted because there are too many mesh nodes. In order to solve a large and complex 3D system,
one has to resort to a different, less demanding computational technique.

In this paper we present a novel energy scanning method. Although based on the finite difference
method, the characteristics of the wave functions are estimated which allows to control and dynam-
ically adjust the relevant parameters.

Pyramid-shaped quantum dots are a standard product of modern semiconductor manufacturing.
For that reason we aim at computing the relevant energy states (eigenvalues) and the corresponding
wave functions (eigenvectors) of an regular three-dimensional array of such quantum dots. We ex-
plain and test our computational scheme for electrons in a non-parabolic conduction band. Thereby
the coupling between neighboring quantum dots can be analyzed as well.

2. Theoretical model

We consider a pyramidal InAs quantum dot embedded in the center of a cuboid GaAs matrix. The
baselines of both should be parallel. Fig. 1 illustrates this. h is the height of the quantum dot pyramid
and a its base length.

The governing equation for this problem is the Schrödinger equation
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where �h is Planck’s constant, k the unknown energy eigenvalue and w ¼ wðrÞ the corresponding eigen-
function for the electron under discussion. The effective electron mass m ¼ mðr; kÞ and the confine-
ment potential V ¼ VðrÞ are discontinuous across the heterojunction.

The dependence of mðr; kÞ on k can be calculated from eight-band k � p analysis and effective mass
theory [15]. With properly chosen base functions, the effective Hamiltonian Heff defined in (1) can be
block-diagonalized and gives the effective mass mðr; kÞ.

Let us denote by m1ðkÞ the effective mass within the quantum dot and by m2ðkÞ the effective mass
of the matrix. Likewise, V1ðkÞ is the effective potential of the quantum dot and V2 of the matrix. Kane’s
matrix element [16] Pk is given by

P2
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2=ðkþ gk � VkÞ þ 1=ðkþ gk � Vk þ dkÞ
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Here, m0; gk and dk are the bulk effective mass, the conduction and spin-orbit split-off band gaps for
the quantum dot ði ¼ 1Þ and for the matrix ði ¼ 2Þ. Because the effective masses mk are much smaller
that the bulk effective electron mass m0 one may approximate by

Lz

Ly

h

a

Lx

Fig. 1. Scheme of a single pyramid quantum dot with height h and base length a embedded in the center of a cuboid GaAs
matrix cell of dimensions Lx; Ly and Lz , respectively.
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