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This paper presents an effective and feasible eigen-energy scanning
method to solve polynomial matrix eigenvalues introduced by 3D
quantum dots problem with band non-parabolicity. The pyramid-
shaped quantum dot is placed in a computational box with uni-
form mesh in Cartesian coordinates. Its corresponding Schrodinger
equation is discretized by the finite difference method. The inter-
face conditions are incorporated into the discretization scheme
without explicitly enforcing them. By comparing the eigenvalues
from isolated quantum dots and a vertically aligned regular array
of them, we investigate the coupling effect for variable distances

between the quantum dots and different size.
© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Nanoscale semiconductor quantum dots (QDs) have been investigated extensively in science [1-3]
and for applications [4-6]. Besides theoretical and experimental methods, numerical simulation can
offer insights into the electronic and optical properties of quantum dots [7,8]. There is a wide range
of numerical methods: expressing the wave function as a series of orthogonal functions [9], Fourier
expansion [10], plane wave expansion [11], k- p perturbation theory [12], finite element method
[13], finite differences [14] and so on. When moving to higher dimensions, the methods based on
Fourier-type expansions and direct diagonalization become expensive in terms of both memory and
CPU time. The finite difference method, simple, flexible and portable, has found widespread applica-
tion in scientific and technical computation. When dealing with 3D quantum structures, especially if
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taking the spin-orbit split-off effect into account, the CPU time and memory resources soon get ex-
hausted because there are too many mesh nodes. In order to solve a large and complex 3D system,
one has to resort to a different, less demanding computational technique.

In this paper we present a novel energy scanning method. Although based on the finite difference
method, the characteristics of the wave functions are estimated which allows to control and dynam-
ically adjust the relevant parameters.

Pyramid-shaped quantum dots are a standard product of modern semiconductor manufacturing.
For that reason we aim at computing the relevant energy states (eigenvalues) and the corresponding
wave functions (eigenvectors) of an regular three-dimensional array of such quantum dots. We ex-
plain and test our computational scheme for electrons in a non-parabolic conduction band. Thereby
the coupling between neighboring quantum dots can be analyzed as well.

2. Theoretical model

We consider a pyramidal InAs quantum dot embedded in the center of a cuboid GaAs matrix. The
baselines of both should be parallel. Fig. 1 illustrates this. h is the height of the quantum dot pyramid
and a its base length.

The governing equation for this problem is the Schrédinger equation
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where h is Planck’s constant, 4 the unknown energy eigenvalue and = y(r) the corresponding eigen-
function for the electron under discussion. The effective electron mass m = m(r, 1) and the confine-
ment potential V = V(r) are discontinuous across the heterojunction.

The dependence of m(r, 1) on / can be calculated from eight-band k - p analysis and effective mass
theory [15]. With properly chosen base functions, the effective Hamiltonian He defined in (1) can be
block-diagonalized and gives the effective mass m(r, 1).

Let us denote by m; (1) the effective mass within the quantum dot and by m, (1) the effective mass
of the matrix. Likewise, V(1) is the effective potential of the quantum dot and V; of the matrix. Kane’s
matrix element [16] P is given by
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Here, my, g, and &, are the bulk effective mass, the conduction and spin-orbit split-off band gaps for

the quantum dot (i = 1) and for the matrix (i = 2). Because the effective masses m, are much smaller
that the bulk effective electron mass my, one may approximate by
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Fig. 1. Scheme of a single pyramid quantum dot with height h and base length a embedded in the center of a cuboid GaAs
matrix cell of dimensions Ly, L, and L,, respectively.
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