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Soohee Han a, Yeoin Yoon b, Kwang-Hyun Cho c,∗
a Bio-MAX Institute, Seoul National University, Seoul 151-818, Republic of Korea

b Graduate Program in Immunology, College of Medicine, Seoul National University, Seoul 110-799, Republic of Korea
c Department of Bio and Brain Engineering and KI for the BioCentury, Korea Advanced Institute of Science and Technology,

Daejeon 305-701, Republic of Korea

Received 4 May 2007; received in revised form 20 July 2007; accepted 10 August 2007

Abstract

We present an optimization-based inference scheme to unravel the functional interaction structure of biomolecular components within a cell.
The regulatory network of a cell is inferred from the data obtained by perturbation of adjustable parameters or initial concentrations of specific
components. It turns out that the identification procedure leads to a convex optimization problem with regularization as we have to achieve the
sparsity of a network and also reflect any a priori information on the network structure. Since the convex optimization has been well studied for a
long time, a variety of efficient algorithms were developed and many numerical solvers are freely available. In order to estimate time derivatives from
discrete-time samples, a cubic spline fitting is incorporated into the proposed optimization procedure. Throughout simulation studies on several
examples, it is shown that the proposed convex optimization scheme can effectively uncover the functional interaction structure of a biomolecular
regulatory network with reasonable accuracy.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The high throughput measurement technologies in life sci-
ence enable us to acquire a large amount of quantitative data on
biomolecular substances in a living cell. Monitoring the quan-
titative variation of biomolecular components provides us with
information on the intra-cellular stimulus-response processing
steps. With the constant development of new technologies, sys-
tems theories based on mathematical approaches have been
recently adopted to explore biological systems (Khammash
and El-Samad, 2004; Sontag, 2004), which has formed a new
area called systems biology (Wolkenhauer et al., 2003). One
important issue in systems biology is to identify the functional
interactions between biomolecular components such as genes
and proteins (Wolkenhauer et al., 2004; Barabasi and Oltvai,
2004; Cho et al., 2005).
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The identification of physical systems has been widely inves-
tigated for a long time and relatively well established (Ljung,
1987; Saligrama, 2005; Markovsky et al., 2005; Barker et al.,
2004). When system parameters are not available and thereby it
is difficult to apply any physical formula, the identification of a
mathematical model from measured data is essential. A cellular
dynamic system usually contains a lot of parameters and exhibits
too complex dynamics, so it is in general difficult to derive a
mathematical model from a physical formula. In this regard,
the identification of a biological system is crucial in developing
a mathematical model from measured experimental data (Ziv,
2004). In this paper, we present a systematic way of inferring
a biological regulatory network which describes the functional
interactions between biomolecular components, by using only a
limited number of time-series data.

In order to probe intra-cellular interactions, an external
perturbation of adjustable parameters or initial concentrations
of specific components is often employed and the difference
between a normal state and a perturbed state is analyzed. By
quantifying a priori knowledge on the regulatory relationships
into probabilistic models, a substantial amount of work have
been done to develop Bayesian approaches (Beal et al., 2005;
Schafer and Strimmer, 2005; Werhli et al., 2006; Pournara and
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Wernisch, 2004; Chen et al., 2006; Missal et al., 2006). On the
other hand, for identification of a biomolecular regulatory net-
work without such probabilistic models, the previous studies
have mainly focused on least square criteria in a linearized
model (Schmidt et al., 2005; Tegner et al., 2003; Bansal et
al., 2006; Thomas et al., 2004; Li et al., 2006). Since the 2-
norm based cost function such as least square criteria puts a
very small weight on small residuals, the corresponding opti-
mal solution can have many nonzero elements. This implies that
the resulting network can contain many false connections. We
also note that biomolecular regulatory networks have a sparse
structure. For instance, each node in a gene network interacts
with only a small fraction of the other nodes in the network.
An approach to obtain such a sparse solution has been devel-
oped in a heuristic manner (Yeung et al., 2002). In order to
reduce the number of unknown variables to be estimated and
thus enhance the accuracy of the identification result, responses
to perturbations that directly influence only one component were
considered in Sontag et al. (2004). However, in many practical
cases, it is difficult to find and apply such a perturbation. In addi-
tion, we note that the aforementioned approaches were based on
discretization of a continuous-time system and then recovering
the continuous-time system via transformation. Since a descriti-
zation procedure might introduce additional numerical errors,
it is desired to stay with continuous-time systems and estimate
time derivatives directly from discrete-time data instead.

In this paper, an optimization-based inference scheme is pro-
posed to unravel the functional interactions among biomolecular
components within a cell. It turns out that the inference pro-
cedure leads to an efficient convex optimization problem with
regularization. Since convex optimization has been well studied
for a long time, a variety of efficient algorithms were developed
and many numerical solvers are freely available (Grant et al.,
2005; Sturm, 2004).

The sparsity of a solution is further considered in this paper by
formulating a cost function with the sum-absolute-value norm
regularization. If we have any a priori information, we can
impose it as a further constraint. Previously known interactions
between components can be easily incorporated in this way.
Moreover, this paper considers only a continuous-time system
in order to minimize the numerical errors caused by discretiza-
tion. In particular, we employ a cubic spline method to estimate
time derivatives from measured discrete-time data.

In Section 2, a mathematical formulation of inferring a
biomolecular regulatory network is described and the cor-
responding convex optimization problem is constructed. An
inference algorithm based on convex optimization is then pro-
posed. In Section 3, the identification results of the proposed
inference scheme are illustrated by three examples. Finally, con-
clusions are made in Section 4.

2. Inference of Biomolecular Interaction Networks and
Convex Optimization with Regularization

We consider a state vector x(t) = [x1(t) . . . xn(t)]T, the
components of which represent concentrations, activities, or
expressions of biomolecular components in a cellular network.

The state x(t) evolves along with time and constitutes the fol-
lowing nonlinear dynamic system:

ẋ(t) = f (x(t), p), (1)

where p is a vector of adjustable parameters such as kinetic rate
constants, pH, and temperature. A system in the form of (1) can
be considered as a network represented by a weighted directed
graph. The nodes and edges of the network correspond to the
biomolecular components and regulatory relationships between
the components, respectively.

From (1), the state component xi(t) for each network node
can be written as

ẋi(t) = fi(x(t), p). (2)

Note that the function fi(·, ·) describes how the rate of change
of xi depends on other components of the network. If all the
interactions between biomolecular components within a cell are
properly identified, we can reconstruct the function f in terms of
the so-called biomolecular kinetic equations.

If systems are assumed to be operating near a steady state,
then the Jacobian matrix A can be given by

Aij = ∂fi

∂xj

. (3)

If Aij is zero, the component xj has no direct effect on the
component xi. In this case, there is no edge from the node j to
the node i in the network. On the other hand, if Aij > 0, the node
j activates the node i by enhancing the net rate of xi production,
and if Aij < 0, the node j inhibits the node i. The nonzero values
of Aij specify the positive (activating) or negative (inhibiting)
interaction strengths between network nodes. The higher the
absolute value of Aij has, the stronger the effect of the node j
on the node i is. In biomolecular networks, identifying the sign
of nonzero elements in A is even useful since only a very small
number of sampled data are available from experiments while
the underlying dynamics are highly nonlinear. Such qualitative
information on the interactions (activation or inhibition) can be
utilized in bio-medical applications by predicting an adverse
effect of a new drug at a genomic level for instance.

The nonlinear dynamic system (1) can be approximated by a
linearized system based on the Jacobian A in (3) as follows:

δẋ(t) = ∂f

∂x
δx(t) + ∂f

∂p
δp, (4)

δẋ(t) = Aδx(t) + bδp, (5)

where δx(t) and δp represent the differentials of a state and a
parameter, respectively.

If the effect of perturbations on a network is partially known
in advance, we can use this a priori knowledge in reducing the
number of unknown variables to be estimated and thereby can
enhance the accuracy of the identification. Suppose that a set of
experimental perturbations that do not directly influence xi is
selected. Each of these perturbations may directly affect one or
more nodes other than xi. For a formal description, for each xi,
we choose a set of parameters pj such that the function fi does
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