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Abstract

The calculation of contact-dependent secondary structure propensity (CSSP) has been reported to sensitively detect non-native �-strand propen-
sities in the core sequences of amyloidogenic proteins. Here we describe a noble energy-based CSSP method implemented on dual artificial neural
networks that rapidly and accurately estimate the potential for the non-native secondary structure formation in local regions of protein sequences.
In this method, we attempted to quantify long-range interaction patterns in diverse secondary structures by potential energy calculations and
decomposition on a pairwise per-residue basis. The calculated energy parameters and seven-residue sequence information were used as inputs for
artificial neural networks (ANNs) to predict sequence potential for secondary structure conversion. The trained single ANN using the >(i, i ± 4)
interaction energy parameter exhibited 74% accuracy in predicting the secondary structure of test sequences in their native energy state, while the
dual ANN-based predictor using (i, i ± 4) and >(i, i ± 4) interaction energies showed 83% prediction accuracy. The present method provides a
simple and accurate tool for predicting sequence potential for secondary structure conversions without using 3D structural information.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The conversion of �-helix to �-strand conformations and the
presence of chameleon sequences have been widely reported
and extensively investigated from the perspective that such
structural features are implicated in the induction of amyloid-
related fatal diseases (Chiti et al., 1999; Jimenez et al., 1999;
Fandrich et al., 2001; Sacchettini and Kelly, 2002). Previous
studies have shown that the propensity of individual amino acids
to adopt particular secondary structures arises from a combi-
nation of local factors (inherent conformational preferences)
and non-local factors (tertiary effects) (Minor and Kim, 1996;
Sudarsanam, 1998). However, conventional secondary structure
prediction methods rely heavily on intrinsic propensity and local
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neighbors (Rost, 1996; Pollastri et al., 2002). Thus, we have
recently introduced a computational method that quantifies the
influence of tertiary effects on secondary structural preferences
using a simple approach that counts the number of atom-to-atom
tertiary contacts (TCs) (Yoon and Welsh, 2004, 2005). Employ-
ing this TC-based scheme, we formulated a computational tool
that predicts contact-dependent secondary structure propensity
(CSSP). Sequence–structure relationships of query sequences
were systematically evaluated in terms of TCs (low TCs versus
high TCs) by analyzing the secondary structure preferences of
template sequences for which the three-dimensional structure
is known. Accurate predictions of non-native secondary struc-
ture preferences were obtained using short (seven-residue) query
sequences without direct knowledge of the query’s native ter-
tiary structure and despite the absence of structural information
on amyloidogenic sequences.

In the present study, we attempted to improve the CSSP
method by using energy-based tertiary interaction parameters as
inputs rather than the simple TC counting. We recently analyzed
the observed secondary structure conversion in chameleon
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sequences by using potential energy decomposition on a pair-
wise per-residue basis (Yoon and Jung, 2006). The long range
interaction beyond the (i, i ± 4) position, i.e., >(i, i ± 4) inter-
action energy, was found to be an effective tertiary interaction
parameter for discriminating beta conformation from helix or
random coil conformations in chameleon sequences. The (i,
i ± 4) term was more discriminative than >(i, i ± 4) energy for
the helical conformation of chameleon sequences. In addition,
electrostatic and polar solvation terms were shown to be major
energetic factors in secondary structure conversion in chameleon
sequences. In the present study, we investigated how these ener-
getic parameters could improve the CSSP method compared
with TC-based method. Our primary motivation in develop-
ing an advanced CSSP algorithm was to provide a simple yet
accurate tool that can gauge the non-native secondary structure
propensity and the marginal stability of local sequences.

2. Methods

2.1. Preparation of Peptide Library

To construct the peptide library of a seven-residue sequence
from diverse tertiary contexts, we used protein domain
sequences and their 3D structures listed in Structural Classi-
fication Of Proteins 20 (SCOP20) Version 1.67 (Brenner et al.,
2000). SCOP20, a collection of protein domains that exhibit
<20% sequence identity between any two members, provided a
rich source of non-homologous sequence contexts from diverse
tertiary environments. A total of 3676 globular domains whose
3D structures have been determined by X-ray crystallography
were selected from SCOP20 after excluding membrane proteins,
small proteins, and proteins with incomplete structural infor-
mation. The 3D coordinates of these domains were retrieved
from the Protein Data Bank (PDB). In order to optimize the
protein structures for energetic analysis, energy minimization
was carried out on the retrieved PDB entries using the AMBER
program (Version 8.0) (Case et al., 2004). After energy mini-
mization, the secondary structure of each protein residue was
assigned by using the dictionary of secondary structure in pro-
teins (DSSP) program (Kabsch and Sander, 1983) which is one
of popular methods (such as P-SEA) for identifying secondary
structures in protein structures. Then, a sliding seven-residue
window, shifting one residue at a time, was employed to collect
a total of 463,591 sequence fragments of seven-residue length
from the 3676 SCOP20 domain structures.

2.2. Pairwise Per-residue Energy Calculation and Energy
Decomposition

For the center residue in each seven-residue sequence in a
given protein, interaction energies with the remaining residues
were calculated on a per-residue basis, particularly for two inter-
action types, i.e., (i, i ± 4) and >(i, i ± 4) interactions. The energy
for >(i, i ± 4) interactions represents the sum of pairwise poten-
tial energies with residues beyond the (i, i ± 4) positions in a
sequence. The solvation effect was represented implicitly by a
generalized Born/surface area (GB) model implemented in the

Sander module of AMBER. Residue-based non-bonding inter-
action energies were further decomposed into van der Waals
and electrostatic terms. The solvation energy was also calcu-
lated and decomposed into polar and solvent accessible surface
(SAS) components of the GB model.

Since individual amino acids differ with respect to side-
chain length, composition, and hydrophobicity, the interaction
energy of an input sequence was standardized by the average
and standard deviation of interaction energy of the correspond-
ing amino acids. Then, the standardized potential energy for a
seven-residue fragment was obtained by summing the individ-
ual energies of the middle five residues. The TC counting in
minimized structures was performed in the same fashion to a
previous study (Yoon and Welsh, 2005).

2.3. Artificial Neural Network for CSSP Prediction

A feed-forward back-propagation artificial neural network
(ANN) was implemented using the Stuttgart Neural Network
Simulator (SNNS Version 4.1, http://www-ra.informatik.uni-
tuebingen.de/SNNS/). The single network architecture consists
of perceptrons with an input layer encoding for the seven-residue
window, a single hidden layer with 24 nodes, and a single output
layer comprising three output nodes corresponding to �-helix,
�-strand and random coil. The dual network architecture con-
sists of the two single networks described above except that two
distinct output nodes were used. One network has output nodes
for �-helix and non-helix, thus predicting helical propensity;
the other network has output nodes for �-strand and non-beta
strand, thus predicting beta propensity. The input layer con-
tains an additional variable node for the query sequence. This
variable node was set to the computed energy term (>(i, i ± 4)
energy) or TC value of the query sequence for single network
architecture during the training and testing phases. However,
for the dual network architecture, the �-helix predicting net-
work uses the (i, i ± 4) energy term of the query sequence as
the additional input, while the beta predicting network uses
>(i, i ± 4) energy term as the additional input. The training
set comprised 440,884 SCOP20 fragments, each seven residues
in length, together with their energies or TC values, while the
test set consisted of 22,707 fragments that were extracted from
1629 unique fold domains to evaluate the predictive performance
of the trained ANNs. The prediction accuracy of the trained
ANNs was measured using the standard Q3 score, which is the
sum of correct predictions divided by the total number of test
queries.

2.4. Measure of Secondary Structure Propensity on Protein
Sequence

The alpha propensity, P(�), and beta propensity, P(�), of a
residue (or fragment) were calculated from the trained ANNs.
In the case of dual network architecture, P(�) and P(�) were
calculated from the two separate networks independently. P(�)
is the sum of output values of the helix node from the helix
prediction network using the (i, i ± 4) energy values ranging
from −2.0 to 2.0. P(�) is the sum of output values of beta node
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