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a b s t r a c t

A differential-geometry analysis is employed to investigate the
transmission of electrons through a curved quantum-wire struc-
ture. Although the problem is a three-dimensional spatial problem,
the Schrödinger equation can be separated into three general coor-
dinates. Hence, the proposed method is computationally fast and
provides direct (geometrical) parameter insight as regards the de-
termination of the electron transmission coefficient. We present,
as a case study, calculations of the electron conductivity of a heli-
cally shaped quantum-wire structure and discuss the influence of
the quantum-wire centerline radius of curvature and pitch length
for the conductivity versus the chemical potential.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, growthmethods have allowed rather general and complicated nanowire structures
to be developed in laboratories and characterized in terms of electronic and optical properties [1].
This calls for a better understanding of the importance of size and shape of nanostructures for
physical properties and eventually device characteristics [2–4]. Differential-geometry methods are
convenient for addressing nanostructure shape and size properties. Examples of differential-geometry
applications exist for studies of lipidmolecule structures [5] and carbonnanotubes [6,7]. In the present
work, a differential-geometry analysis is employed to computationally effectively obtain the electron
transmission coefficient or equivalently the electron conductivity for a nanowire semiconductor
structure characterized by a generally varying curvature as a function of the centerline coordinate.We
shall assume the nanostructure to be composed of three regions where regions 1 and 3 are straight
cylinder sections but the central section (region 2) is arbitrarily curved. An electron propagates from
region 1 towards region 2 and the transmission coefficient, defined as the ratio of wave amplitudes
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Fig. 1. Schematic drawing of the complete structure. Region 2 is the helical region while regions 1, 3 are straight cylinder
sections.

in regions 3 and 1, is determined. In the case where the cross-sectional dimensions are small as
compared to the centerline length of the full quantum-wire structure, the complete three-dimensional
problem reduces to a separable problem in all three coordinates. The two ordinary differential
equations in the in-plane coordinates can be solved immediately analytically while the latter ordinary
differential equation in the centerline coordinate can be solved either analytically or numerically using
a simple one-dimensional second-order differential equation. The method allows easy access to the
importance of geometrical parameters such as curvature, centerline length, and in-plane dimensions
for the electron conductivity.

2. Theory

Consider a curved quantum-wire structure composed of three regions. Region 1 is a straight
cylinder, region 2 a curved cylinder, i.e., the cylinder centerline is characterized by a (possibly) varying
curvature as a function of the centerline coordinate u1, and region 3 is a straight cylinder. The cylinder
cross-sectional dimensions, parametrized by u2 and u3, respectively, are constant as a function of the
centerline coordinate for the whole structure.
In the first part of this section, we shall assume that the parametrization of region 2 can be done

using an arc-length parametrization r(s), i.e., the tangent vector t(s) = r′(s) = dr/ds is a unit vector
field along the curve and we can augment it with vector fields p(s) and q(s) along the curve such that
t(s), p(s), q(s) constitutes an orthonormal frame at each point r(s) along the axis.
Assume that the electron is moving from region 1 towards region 2. At the interface between

region 1 and 2, if region 2 is curved, partial reflection of the electron wave takes place. In region 3 the
transmitted wave propagates towards infinity away from the interface between region 2 and region
3.We assume that the parameter range for the structure centerline is−∞ < u1 <∞with the region
1–region 2 interface at u1 = −L and the region 2–region 3 interface at u1 = 0 (see Fig. 1).
The Schrödinger equation in the u1 coordinate for an electron with mass m and energy E reads

(applying to zeroth order in u1 and u2) in the wavefunction χ [8]
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where κ is the curvature of the nanowire centerline, which is a function of u1 only. The potential V
is assumed zero within the quantum-wire structure and infinite outside the quantum-wire structure.
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