
Superlattices and Microstructures 41 (2007) 337–340
www.elsevier.com/locate/superlattices

Long-range radiative interaction between semiconductor
quantum dots

Gaetano Parascandolo∗, Vincenzo Savona

Institute of Theoretical Physics, Ecole Politechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland

Available online 5 April 2007

Abstract

We model the resonant excitation transfer between semiconductor quantum dots, accounting for the
radiative nature of the electromagnetic field. The model based on Maxwell equations and on a non-local
linear susceptibility accounts both for the instantaneous dipole–dipole coupling, decaying as R−3, and for
retardation effects, decaying as R−1. The coupling is strongly resonant and its spatial range is of the order
of the wavelength, due to the radiative nature of the retarded contribution.
c© 2007 Elsevier Ltd. All rights reserved.
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A coherent excitation transfer between polarizable systems such as semiconductor quantum
dots (QDs) can occur without tunneling, that is, without spatial overlap of the wavefunctions
of the separated systems. The prototype of this class of mechanisms is the electrostatic
dipole–dipole interaction, known as Förster Resonant Energy Transfer (FRET) [1]. This
mechanism has been experimentally characterized in the case of closely spaced QD systems [2].
It decays as R−3, where R is the interdot distance. In general, transfer mechanisms due to
the retardation of the electromagnetic field are expected to give some correction to FRET. In
particular, the radiative interaction decays as R−1 and is expected to give a leading contribution
at long distance.

In this work we develop a theory for the radiative coupling between QDs distributed
on a plane. We solve the Maxwell equations for the electromagnetic field coupled to the
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polarization field of the QD ensemble, and compute the collective resonances of the system.
In the resulting analytical expression the R−1 (radiative) and the R−3 (Förster) contributions are
well distinguished. In the instantaneous limit (c → ∞) we recover the pure R−3 FRET.

The semiclassical model of QD interband excitation in interaction with the electromagnetic
field is based on the solution of the Maxwell equations coupled to the interband polarization field
of the QD ensemble. The latter is described by the non-local linear susceptibility tensor deriving
from the linear response theory [3] that, within the effective mass approach, reads
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µcv being the dipole matrix element of the interband optical transition [4], h̄ωα and Ψα(re, rh)

the ground electron–hole (e–h) pair energy and wavefunction in the α-th dot respectively.
The tensor form in Eq. (1) corresponds to the electron–heavy-hole optical transition in a
semiconductor with cubic lattice symmetry, where the z-component of the interband e–h
polarization vector is not coupled to the electromagnetic field. We assume cylindrical QDs with
radius ρ, height h and small aspect ratio h/ρ � 1. The e–h wavefunction Ψα(re, rh) is taken
from a simple model where the z- and (x, y)-motion are separated and no excitonic correlation
is included [5]. The QDs are assumed lying on the (x, y) plane.

By Fourier-transforming to reciprocal space, the Maxwell problem can be turned into an
integral equation [6]. The uncoupled z-component of the Maxwell equations can be solved
analytically. We are then left with a two-dimensional problem for the x- and y-components of
the field. The following Dyson equation for the Fourier components of the in-plane electric field
results:
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Here E0
k is an input field in the medium with dielectric constant ε∞, k0 = (ω/c)

√
ε∞ is the

photon dispersion and k is the in-plane wavevector. The free photon Green’s function that appears
in (2) reads
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where kz =

√
k2

0 − k2 is the z-component of the photon wavevector. The nondiagonal terms
in Eq. (3) give rise to the long-range part of the e–h exchange interaction, included in a
full Maxwell–Schrödinger formalism [4]. These nondiagonal terms average to zero when
evaluating the optical transition amplitude for an isotropic system, while they are responsible
for the longitudinal–transverse (LT) or fine-structure splitting if the system displays an
anisotropy. By projecting onto the set of Fourier-transformed e–h wavefunctions ψα,k =

(2π)−1 ∫
Ψα(r, r) exp(ik · r)dr (α indicates the dot centered in Rα), we obtain
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