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a b s t r a c t

We present an assessment of the diffuse interface models of void growth in irradiated materials. Since the
void surface is inherently sharp, diffuse interface models for void growth must be constructed in a way to
make them consistent with the sharp-interface description of the problem. Therefore, we first present the
sharp-interface description of the void growth problem and deduce the equation of motion for the void
surface. We also compare two existing phase field models to determine which one corresponds to the
sharp-interface analysis. It was shown that a phase field model of type C, which couples Cahn–Hilliard
and Allen–Cahn equations, is the most adequate since this type of model can take into account the reac-
tion of point defects at the void surface via an Allen–Cahn equation. Fixing the model parameters in the
diffuse interface model is discussed from the points of view of asymptotic matching. Sample results for
void growth in a single component metal based on sharp and diffuse interface models are presented.
Finally, a perspective on the use of atomistic modeling in both constitutive and nucleation modeling
within the phase field approach for void formation in irradiated materials is presented.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Neutron irradiation affects the performance and lifetime of nu-
clear reactor components. Such a kind irradiation produces large
densities of vacancies and interstitials, the diffusion and clustering
of which result in the formation of microstructural features such as
dislocation loops and voids in irradiated materials [1,2]. These
microstructural features influence the dimensional stability and
mechanical properties of materials [3,4]. Voids are particularly
important since their presence leads to swelling [5]. Theoretical
models were proposed to investigate void formation and growth
in irradiated materials [6–14]. These models fall into three catego-
ries. The first includes clustering and nucleation type models [6–8],
which are concerned with void nucleation as a result of localized
fluctuations in the vacancy concentration. A characteristic feature
of these models is the existence of a nucleation barrier that must
be overcome in order for void nucleation to take place. The second
category includes models for void lattice formation [9–11]. Spinod-
al instabilities of homogeneous vacancy concentrations, elastic
interaction of voids and reaction–diffusion aspects of point defects

were suggested as possible ordering mechanisms. The last category
includes void growth models based on the chemical reaction rate
theory [12–14]. This theory considers the point defect and sink
concentrations to be spatially uniform fields influencing the
growth of a representative void. A typical rate theory model con-
sists of three equations for the rate of change of vacancy and inter-
stitial concentrations and void radius [1,2]:

_cv ¼ Pv � Kvicvci � Kvscvcs; ð1aÞ

_ci ¼ Pi � Kvicvci � Kiscics; ð1bÞ

_R ¼ ½Dvðcv � ceq
v Þ � Diðci � ceq

i Þ�X=R: ð1cÞ

In the above, cv and ci are the average vacancy and interstitial con-
centrations in the irradiated solid, Pi and Pv are the respective pro-
duction terms, Kvi is a rate constant for vacancy–interstitial
recombination, Kvs and Kis are rate constants for defects reaction
with sinks of average concentration cs, R is the void radius, X is
the atomic volume, ceq

v and ceq
i are the equilibrium vacancy and

interstitial concentrations at the void surface, and Dv and Di are
the diffusion coefficients of vacancies and interstitials, respectively.

It is noted that Eq. (1c) for the void growth rate is practically the
same as the rate equation for diffusion-controlled precipitate
growth from supersaturated matrix in the classical Lifshitz–Sly-
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ozov–Wagner theory [15,16] and the Mullins–Sekerka quasistatic
models [17]. This similarity stems from the fact that the rate theory
assumes that the point defect concentrations at the void surface
take on their thermal equilibrium values and hence the growth
process is completely controlled by the diffusion of point defects
from the bulk to the void surface. The process of void growth, how-
ever, is not necessarily diffusion-controlled and the reaction of
point defects at the void surface must be taken into consideration
in determining the rate of the growth process [18]. The idea of con-
sidering the reaction of defects with voids surface was discussed a
while back [19,20], although this was later discarded. An important
part of the current work is to show that, as a thermodynamic
requirement, reactions of point defect with the void surface must
be considered in the treatment of non-equilibrium void growth.
This theoretical proof does not, however, aim to prove that void
growth is diffusion- or reaction-controlled in the sense these terms
are used in the literature [21], but it is rather a statement that reac-
tion of defects at the void surface must be considered in defining
the boundary conditions for the diffusion of defects in the solid
around the voids. As explained later, this has important implica-
tions as to how diffuse interface (phase field) models for voids
growth should be constructed.

Unlike nucleation from a supersaturated state or growth in a
uniform species background [21], void nucleation and growth in
irradiated materials take place under a highly non-equilibrium
condition involving generation, diffusion and reaction of defects.
The recent surge in interest in nuclear materials performance mod-
eling has led members of the community to adopt the concepts of
phase field approach to model voids in irradiated materials [22–
33]. This new modeling direction was in part motivated by the
need to resolve the nucleation and growth processes in space
and time, and to treat the interaction of defects and the growing
features, voids in this case, with other extended defects explicitly.
Phase field modeling was thus viewed as a means to resolve all
temporal and spatial effects in microstructure growth under irradi-
ation and to handle nucleation and growth concurrently.

The initial phase field modeling of voids nucleation and growth
adopted a simple intuition of how defects, especially vacancies,
agglomerate to form voids and how they contribute to the subse-
quent growth of such features. Two modeling approaches emerged.
In the first approach, [23–28], the process of void formation and
growth was viewed as a spinodal instability in media that are
supersaturated with vacancies. As such, a generalized diffusion
equation of the Cahn–Hilliard type was adequate to describe void
nucleation and growth. In the second approach [29–32], both
Cahn–Hilliard and Allen Cahn equations were used. Both ap-
proaches made the assumption that the void surface can be mod-
eled as a diffuse interface. Aside from the model construction
and the assumptions made therein, and further keeping the accu-
racy of predictions of these preliminary models aside, both kinds
of models seem to capture the spatial and temporal details of void
formation and evolution in materials under irradiation. A funda-
mental question then arises as to how such two seemingly differ-
ent approaches can capture the same process and whether any of
these approaches can be proved to represent the physics of the
problem with a higher fidelity. A second related question is how
to properly construct a phase field framework for voids and what
are the steps required in this regard. These two fundamental ques-
tions are addressed in this communication.

Motivated by the above questions, we discuss void growth
modeling within the phase field framework here. The discussion
focuses on three issues. First is the fact that, being inherently sharp
interface microstructure features in solids, voids do not naturally
fit into the phase field framework. As such, phase field modeling
of void evolution in irradiated solids is a matter of a mathematical
choice. As discussed in Section 2, the diffuse interface formalism of

inherently sharp interface problems has been a successful tradition
in modeling microstructure and morphological evolution problems
[34–36]. Therefore, this formalism can in principle be used to mod-
el void evolution. The second issue is that, having elected to pursue
this problem within the framework of diffuse interface modeling,
what modeling steps are required to ensure consistency of the void
growth model? By consistency here, we mean both thermody-
namic consistency and consistency with the sharp-interface for-
malism itself. The third issue has to do with requiring the phase
field models to handle void nucleation concurrently with growth
and coarsening. As is well known to experts in this modeling area,
the phase field approach is a continuum mesoscale modeling appa-
ratus that discards the discrete atomistic nature of the material
and it treats interfacial dynamics in terms of capillary quantities
such as surface and interface energies. While the capillary nature
of voids is well acknowledged in the classical nucleation theory
[21], nucleation models such as cluster dynamics is inherently
based on the atomic nature of defect clusters as they are based
on single-defect transitions among different cluster sizes [37].
The discrete nature of transitions from one cluster size to another
is also an essential feature of simulation models such as Monte
Carlo [38].

In order to address the first issue above, a quick review of phase
field approach is presented in Section 2, focusing on diffuse inter-
face representations of inherently-sharp interface problems and
the analyses required to ensure consistency of these models with
the corresponding sharp interface formulations. In Sections 3 and
4, we present thermodynamically based sharp and diffuse interface
formulations of the void growth problem and briefly discuss the
analysis required to match these formulations. In Section 5, we dis-
cuss the modeling of gradient free energy terms and nucleation
mechanism within the phase field framework, along with the role
of atomistic simulations in guiding such a modeling and providing
the needed lower scale input. We conclude with some remarks
summarizing the contributions made here.

2. Phase field formalism of sharp interface problems

Phase field modeling has been widely used in predicting micro-
structural evolution in materials [34–36]. The main feature of this
approach is the treatment of the interfaces between phases as dif-
fuse, while the material properties of interest, which are repre-
sented by phase fields or order parameters, are assumed to
change rapidly but smoothly across the interfaces. The position
of the interface is implicitly given by a constant phase field level,
which obviates the necessity of explicitly tracking the interface.
Based on this powerful concept, phase field methods enabled the
simulation of complex evolution problems such as the solidifica-
tion [39], solid-state transformations [40], grain growth [41–43],
crack propagation [44], dislocation dynamics [45], sintering [46–
48], electromigration [49,50] and vesicle membranes [51]. Histori-
cal developments of the diffuse interface concepts can be traced
back to the works of Van der Waals on gas condensation [52], Lan-
dau on phase transitions [53] (where the concept of order param-
eter or phase field was first introduced), Landau and Ginzburg [54]
on superconducting states [54], and Cahn and Hilliard on the ther-
modynamics of heterogeneous systems [55]. In all of these and in
subsequent works, order parameters may represent conserved
quantities such as mass and energy density or non-conserved
quantities such as polarization, long-range order and grain orienta-
tion. In analogy to the stochastic models of dynamic critical phe-
nomena [56], phase field models are often classified into models
of type A, B and C. Models of type A describe systems with non-
conserved order parameters which evolve according to time-
dependent Ginzburg–Landau (or Allen–Cahn) equations [57]. Mod-
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