Current Opinion in Solid State and Materials Science 17 (2013) 271-276

Contents lists available at ScienceDirect

Current Opinion in Solid State and Materials Science

current opinion in
solid state & materials science

journal homepage: www.elsevier.com/locate/cossms

Developing community codes for materials modeling

Steven J. Plimpton **, Julian D. Gale”

2Sandia National Laboratories, Albuquerque, NM 87185, USA

@ CrossMark

> Nanochemistry Research Institute, Department of Chemistry, Curtin University, PO Box U1987, Perth, WA 6845, Australia

ARTICLE INFO ABSTRACT

Article history:
Available online 10 October 2013

Keywords:

Materials modeling
Open source software
Molecular dynamics
Lattice dynamics
Force fields

For this article, we call scientific software a community code if it is freely available, written by a team of
developers who welcome user input, and has attracted users beyond the developers. There are obviously
many such materials modeling codes. The authors have been part of such efforts for many years in the
field of atomistic simulation, specifically for two community codes, the LAMMPS and GULP packages
for molecular dynamics and lattice dynamics respectively. Here we highlight lessons we have learned
about how to create such codes and the pros and cons of being part of a community effort. Many of
our experiences are similar, but we also have some differences of opinion (like modeling vs modelling).
Our hope is that readers will find these lessons useful as they design, implement, and distribute their own

materials modelling software for others to use.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

As described in the abstract, community codes are openly-avail-
able software created and maintained by a (small or large) team of
developers for a broader user community. The benefits of such ef-
forts for users are obvious; they have free access to software that is
continuously improving, resources to turn to for help, as well as in-
put to the development process by requesting bug fixes or suggest-
ing new features. Our experience has been that sponsoring a
community code is also a net positive for the developers. Aside
from the attendant glory and wealth associated with free software
(ok, that’s a stretch) the benefits chiefly result from your code hav-
ing users. Specifically,

users find and report bugs,

users suggest improvements and new capabilities for the code,
users may implement new ideas themselves and give you new
or improved code,

users cite your papers,

users may become new collaborators and colleagues.

The only downside of having users is the extra work required to
support them. This effort comes in the form of documenting your
code’s capabilities, answering questions, and responding to user
feedback. The level of support offered is up to you, so it does not
have to be onerous. After all, users get what they pay for, and the
code is free. Indeed many such codes come with express

* Corresponding author.
E-mail addresses: sjplimp@sandia.gov (SJ. Plimpton), J.Gale@curtin.edu.au
(J.D. Gale).

1359-0286/$ - see front matter © 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.cossms.2013.09.005

statements that support cannot be provided. However, in reality
most developers relent and are willing to offer as much assistance
as time permits. As a user community enlarges, support can be of-
fered by a growing group of people via web-based forums and mail
lists.

As examples of community codes for materials modeling, we
highlight our experience with LAMMPS and GULP, since the
authors are their lead developers. In order to give context to the
subsequent discussion, we start with a short historical perspective
on these two codes.

LAMMEPS is a classical molecular dynamics (MD) code [15,17],
begun in the mid-1990s as a cooperative effort between two US
DOE laboratories and several industrial partners to develop a par-
allel MD code, since parallel machines were then an up-and-com-
ing novelty. For its first 10 years LAMMPS was free but required
new users to sign a perfunctory license agreement, which about
100 users did. In hindsight such a license was a significant barrier
to attracting users since it often meant a lawyer wanted to read it.
In 2004, we re-wrote the code in C++, to make it more flexible for
adding new features, and released it openly under the GNU General
Public License (GPL) [14]. It was downloaded 1000 times in the first
four months, and 150,000 times to date. Since its open release
LAMMPS has grown in size from about 50 K to 500 K lines of code,
as developers and 100+ users have contributed new code. Some of
the new capabilities are features we never imagined being part of
LAMMPS or even an atomistic MD code, such as treatment of elec-
trons as variable-radius particles [12], continuum-scale models of
fracture dynamics via particles [16], or coupling granular particles
to finite-element fluid solvers for two-phase flow modeling [2,13].
Our chief mechanism for supporting LAMMPS users is a mail list
where questions or problems can be posted, which we began a year

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cossms.2013.09.005&domain=pdf
http://dx.doi.org/10.1016/j.cossms.2013.09.005
mailto:sjplimp@sandia.gov
mailto:J.Gale@curtin.edu.au
http://dx.doi.org/10.1016/j.cossms.2013.09.005
http://www.sciencedirect.com/science/journal/13590286
http://www.elsevier.com/locate/cossms

272 S.J. Plimpton,].D. Gale/Current Opinion in Solid State and Materials Science 17 (2013) 271-276

after the code’s open release. The list now has 1200 subscribers and
an archive of 40 K postings.

Similar to LAMMPS, GULP is also based on exploiting a classical
force field description of interatomic forces [6,8,9], though there
was also a brief flirtation with periodic semi-empirical quantum
mechanics [7]. In contrast to LAMMPS, GULP targets the more
niche application of lattice dynamics, though it also has a molecu-
lar dynamics capability. Because of this focus, our objective has
been to provide high levels of analytical derivatives that allow
accurate calculation of mechanical and phonon properties for crys-
talline materials. GULP also started in the early 1990s, at the Royal
Institution of Great Britain, as an attempt to automate the fitting of
interatomic potential parameters [5], which previously had to be
undertaken by hacking source code for each desired fit. At that
time disk space was at a premium and was often exhausted by
building a different executable for every job!

Initial distribution of GULP began by sharing copies with other
groups in the UK, but eventually progressed to the point where it
was distributed to any academic group by emailing tar files. In the
late 1990s, this was placed on a more formal footing by Imperial Col-
lege. Instead of opting for an open-source approach, a different
licensing arrangement was made. While the right to free access
for academics was enshrined in the agreement, commercial distri-
bution was assigned to the company that is now Accelrys Inc. In this
respect, and the fact it remains a staunchly proud Fortran code, the
pathway for GULP has forked considerably from that taken by LAM-
MPS. However, there are also many similarities, including the size of
the current version which also runs to nearly 500 K lines of code. To-
day, academic distribution is handled by an automatic web-based
registration system; access for anyone with a University email ad-
dress is thus almost instantaneous, similar to a GPL code. Because
of the different access mechanism, we tally registered users rather
than downloads; this currently runs to more than 6000 people.

The next section distills six lessons we have learned about what
helps a materials modeling code attract a community of users.
Many of the ideas reflect the current state of LAMMPS and GULP,
but we learned them by trial-and-error and implemented them
incrementally. We argue that turning your home-grown research
code into a community code is not a decision with a large energy
barrier, but is more a philosophical approach to software design,
development, and release. Like most software tasks, adopting a
community-oriented strategy is least difficult if it is part of the
up-front design of your software and maintained incrementally
over time. But of course existing legacy software can also be re-
leased openly and become a community code; hopefully these
ideas will benefit that process as well.

2. Lessons learned

Here are six rules-of-thumb for creating and maintaining a suc-
cessful community materials modeling code:

1. make something people want,

. the perfect is the enemy of the good,

3. make it easy for others to understand, modify, and extend your
code,

4. choose an appropriate license,

. support your users,

6. choose an appropriate name for your software.

N

[9)]

2.1. Make something people want

This is a mantra of the internet start-up culture [10] when a
handful of friends create a company to turn their software idea into
money. In a commercial setting, it seems obvious that customers

will only visit your web site, use your software, and give you
money if they get some value from it. But it also applies to
freely-available research software. Knowing how to write code to
perform some computational task is a necessary first step, but is
not sufficient to attract users to your software.

Asking yourself questions such as these is a useful exercise:
What problem do people want to solve? How can our software
make it easier for them to do so? In what ways will our code be dif-
ferent or better than others that already exist? It also helps to
examine your software from a new user’s perspective. Every pro-
grammer knows it is easy and fun for an expert (you) to write code
with only yourself in mind, adding features or obscure and tricky
options that confuse mere mortals. If your software is not easy
for a new user to quickly do something useful with, they probably
will not continue to use it. If your code has a mailing list where
new users post questions, you will be surprised by what issues
they stumble over which you never thought would be important.

Our initial goal with LAMMPS was to create an MD code which
exploited spatial parallelism, in hopes it would scale well to new
machines with hundreds or thousands of processors. At the time
GULP was conceived, there had been a series of codes going back
several decades that already fulfilled the same basic need to opti-
mize the structure of solids from interatomic potentials and com-
pute their properties. This is nicely captured in a tribute to the
pioneering contribution of Michael Norgett [21]. So why create
yet another program in this field? Largely, this came from frustra-
tion, as a user of the programs of the day, that the input file format
was too rigid and less friendly than it could be. Furthermore, for
those not of a C persuasion, the timing coincided with the arrival
of Fortran 90 and dynamic memory allocation. By removing the
need to regularly recompile for each problem, this allowed distri-
bution of executables for the benefit of those not inclined to worry
about the finer details of computers. Thus experience as a user,
combined with changes in technology, created the opportunity
for a new code.

2.2. The perfect is the enemy of the good

This aphorism is attributed to Voltaire, who apparently was a
savvy software developer. When you first contemplate releasing
your code to the unwashed masses, you imagine users will pore
over its innards, test every option, and mock you whenever it
breaks. Thus the natural tendency is to wait to release until you
are confident the code is near-perfect. Aside from the improbabil-
ity of ever reaching that state, the problem with this strategy is you
delay having users, with all the benefits listed in the introduction.

A better mantra for community codes is release early and often.
For example if your current code has 5 simple bullet-proof features
and 3 bleeding-edge brittle ones that are only suitable for experts,
you are better off removing the 3 features and making an initial re-
lease of the simpler version of the code. You may get feedback that
a capability you had not thought of is more useful than the 3 you
are working on. Or when you do release the bleeding-edge features
(one at a time), you will hopefully have users eager to try them out
and give you feedback about what works and what does not and
what would make the new feature easier to use. Having such beta
testers has a synergistic effect on the development process, speed-
ing the rate at which a bleeding-edge feature is converted into a
bullet-proof one. It is also more satisfying to a developer to release
something immediately and get feedback than it is to wait for
perfection.

With LAMMPS, we initially released a new version of the code a
few times a year. The releases became artificial deadlines which
developers stressed over getting code ready for. Instead, we now
release every bug fix or new feature as soon as we finish it, posting
a patch and new tarball on our web site, often 100 s of times per

Download English Version:

https://daneshyari.com/en/article/1555589

Download Persian Version:

https://daneshyari.com/article/1555589

Daneshyari.com

https://daneshyari.com/en/article/1555589
https://daneshyari.com/article/1555589
https://daneshyari.com

