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Since the characteristic of dendrite is an important factor determining the performance of castings, a two-
dimensional cellular automaton model with decentered square algorithm is developed for quantitatively
predicting the dendritic growth during solidification process. The growth kinetics of solid/liquid interface are
determined by the local equilibrium composition and local actual liquid composition, and the calculation of the
solid fraction increment is based on these two compositions to avoid the solution of growth velocity. In order
to validate the developed model, quantitative simulations of steady-state dendritic features over a range of
undercooling was performed and the results exhibited good agreement with the predictions of LGK (Lipton—
Glicksman—Kurz) model. Meanwhile, it is demonstrated that the proposed model can be applied to simulate
multiple equiaxed dendritic growth, as well as columnar dendritic growth with or without equiaxed grain
formation in directional solidification of Al—Cu alloys. It has been shown that the model is able to simulate
the growth process of multi-dendrites with various preferential orientations and can reproduce a wide range of
complex dendritic growth phenomena such as nucleation, coarsening of dendrite arms, side branching in
dendritic morphologies, competitive growth as well as the interaction among surrounding dendrites.
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1. Introduction

Solidification of metals is a key process determining the final
properties to a large extent!' ), and studying the formation
mechanism of solidification microstructures and controlling
them as designed, have been widely concerned™. Dendritic
morphology is probably the most common microstructure
observed during solidification process, which has a significant
effect on the final properties. Due to the invisibility of the melt, it
is difficult to real-timely observe the dendritic formation process.
Although the synchrotron X-ray radiography technology devel-
oped in recent years makes direct observation be possible, the
difficulty in preparing samples and the high requirements for
equipments are also the challenges that the researchers need to
face.

In recent decades, with the advancements of computer tech-
nology, numerical modeling and simulation have been widely
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used as a powerful tool to make a better understanding of den-
dritic evolution®® 7. At present, various kinds of deterministic
and stochastic models have been developed to simulate the
evolution of dendritic morphologies during solidification, among
which, phase field (PF) and cellular automaton (CA) methods
have been employed extensively. PF method, based on a set of
thermodynamically-based partial differential equations, deals
with the solid/liquid (S/L) interface by introducing a smooth
transition variation of order parameter ¢, thus avoiding the
explicit tracking of S/L interface!™”. PF models have been
successfully applied to simulate binary or ternary alloys in two or
three dimensions and to investigate the growth kinetics and
Gibbs energy!'’'?. However, PF models require complex cal-
culations and high computational resources, restricting the
application of the models to small regions. CA method, as
another computational approach, can reveal a wide range of
micro-meso scale dendrite/grain evolution phenomena such as
columnar-to-equiaxed transition (CET)!'*! and deflection
behavior of the dendritic growth in a flowing melt''*!. The
simulated results of CA model are similar to those of PF method
and it has a higher computational efficiency!'”). Therefore, CA
method is rapidly emerging as a choice of simulating the den-
dritic formation in solidification process!'” '®. A two-
dimensional CA model coupled with finite element (FE) to
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obtain the non-uniform temperature field, originally proposed by
Gandin and Rappaz!''”’, was developed to simulate grain nucle-
ation and growth during solidification. This model is capable of
predicting the mesoscopic scale grain structure with a random
orientation by adopting the decentered square growth algorithm,
which was later successfully extended for simulations in three
dimensions?”). However, due to the fact that the model does not
take the solute diffusion into account, it is unable to simulate the
micro-scale dendritic features. Nastac'”'! proposed a compre-
hensive stochastic CA model including time-dependent calcu-
lation of temperature field, solute redistribution both in solid and
liquid, interface curvature as well as the growth of anisotropic
parameters. This model is capable of explicitly tracking the S/L
interface and simulating the evolution of dendritic crystals dur-
ing solidification. Sanchez and Stefanescu®” developed a CA
model with the ability to simulate quantitatively most of the
dendritic features observed experimentally. This model gave a
detailed introduction of a new solution for the calculation of
interface local curvature instead of using empirical formula''!,
which reduced the artificial anisotropy caused by meshes to a
certain extent. Sun et al.** developed a coupled CA model for
the simulation of dendritic growth in the presence of forced and
natural melt convection. The melt flow, solute transport and
thermal transport were calculated by adopting a kinetic-based
lattice Boltzmann method (LBM). Recently, with some certain
assumptions, CA models have not been limited to only binary
alloys, and many attempts have been made to extend CA models
to predict the microstructure of multi-component systems!™>*!.

Unfortunately, as a result of artificial anisotropy induced by
the CA mesh and the corresponding neighborhood configuration
and capture rules, most of the CA models are mesh dependent
and can only simulate the dendrites growing aligned with the
grid or in 45° orientation. To deal with the problem, the
decentered square/octahedron algorithm originally proposed by
Rappaz et al., was later modified by Wang et al.”l, through
coupling the finite difference model to solve the solute diffusion
equations. The algorithm eliminated the effect of grid anisotropy
and was adopted by many workers to describe the dendritic
growth with arbitrary preferential orientation™*>*1. On the
basis of this technique, the solutal interaction within an
advancing columnar dendritic network and columnar-to-
equiaxed transition of Al—Cu alloys were investigated by
Dong and Lee!'”), and the stray grain formation mechanism in
the platform region of turbine blades was revealed by Yang
et al.?”!. Sanchez and Stefanscul® improved their previously
developed CA model™! by using virtual front tracking (VFT) of
the shape S/L interface and made the model valid for simulating
dendrites growing at an arbitrary crystallographic orientation.
Later, Zhu and Stefanescu'® adopted the virtual front tracking
method and calculated the solid fraction increment through the
difference between the local equilibrium composition and the
local actual liquid composition, rather than by solving the solute
conservation equation at the S/L interface to obtain the growth
velocity. Wei et al.l'”*®! developed a model to reduce the mesh-
induced anisotropy by adopting new random zigzag capture rules
for interface cells and presented a modified interface curvature
calculation method simultaneously. John et al.”*! also investi-
gated the influence of the presence of artificial anisotropy on
growth kinetics induced by CA mesh and developed a modified
cellular automaton-finite volume model, in which the grid
dependent anisotropy was reduced by adjusting the addition of
solid fraction and the redistribution of the solute rejected.

Although a lot of efforts has been made to develop CA models
for dendrite simulation, the work on this aspect is still far from
satisfaction and further efforts are needed. In the current paper, a
two-dimensional cellular automaton model is presented to
simulate the dendritic growth with different preferential orien-
tations during the solidification process, by adopting the
decentered square algorithm to eliminate the mesh-induced
anisotropy. The model is compared with the well-established
Lipton—Glicksman—Kurz (LGK) analytical model for dendritic
tip features of Al—Cu alloys. In particular, a series of simulations
including multi-equiaxed dendrites in undercooled melt and
columnar dendrites in directional solidification, are conducted to
examine the characteristics and capabilities of the model, and the
simulated results are compared with the experimental observa-
tions published in other papers by in situ and real-time syn-
chrotron X-ray radiography technique.

2. Model Description and Numerical Algorithm

CA model for simulating dendrites is a set of algorithms used
to describe the evolution of discrete time and space. In the
present model, a two-dimensional rectangular calculation
domain is uniformly divided into an orthogonal arrangement of
square cells with the size of Ax in Cartesian coordinate, and each
cell is assigned a pair of integer number (i,/). Each of the spatial
cells possess several variables, such as temperature (7), solute
content (Cp and Cg), solid fraction (fg), and crystallographic
orientation (f). According to the solid fraction, the state of the
cells can be identified as solid (fs = 1), liquid (fs = 0) and
interface (0 < fs < 1). The calculation starts with all the cells in
the liquid state. The state transformation from liquid to interface
can be achieved through the following ways: stochastic nucle-
ation event, artificially setting certain cell’s state as interface or
captured by its neighboring solid cells. For partition coefficient
ko < 1 alloys, due to the fact that the local interface equilibrium
composition (C}) of a growing cell is larger than its local actual
liquid composition (Cp), which is determined from mass transfer,
in order to strive for equilibrium, part of the liquid in the cell will
solidify to reject the redundant solute, which will diffuse to its
neighboring liquid cells. Owing to the growth of interface cells,
the temperature field and solute field steadily change in every
time step, which will in turn affect the dendritic growth. In order
to simulate the dendritic growth process, the governing equations
used to calculate the distribution of concentration and tempera-
ture, interface curvature, growth kinetics, solid fraction, and
nucleation process will be described below.

2.1. Thermal field calculation model

Since the heat diffusivity is several orders of magnitude larger
than solute diffusivity, it is reasonable to assume that the heat
diffusion has reached an equilibrium state at the scale of
dendrite. Therefore, simple and well-defined thermal conditions
are applied in the calculation domain. For directional solidifi-
cation conditions, a schematic illustration is shown in Fig. 1. For
an adiabatic boundary condition on both sides, the whole
simulation domain cools at a cooling rate Rc with a fixed tem-
perature gradient G. At solidification time ¢, the temperature 71()
at the point (x,y) can be simply expressed as

T(t) = Tiq(Co) + Gy — Rt 0
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