Contents lists available at ScienceDirect

Nano Energy

journal homepage: www.elsevier.com/locate/nanoen

Biomimetic polymeric semiconductor based hybrid nanosystems for artificial photosynthesis towards solar fuels generation *via* CO₂ reduction

Han Zhou ^{a,b,*}, Peng Li ^{c,d}, Jian Liu ^{a,*}, Zupeng Chen ^a, Lequan Liu ^{c,d}, Dariya Dontsova ^a, Runyu Yan ^b, Tongxiang Fan ^{b,*}, Di Zhang ^b, Jinhua Ye ^{c,d}

^a Department of Colloid Chemistry, Max-Planck Institute of Colloids and Interfaces, Research Campus Golm, Potsdam 14476, Germany

^b State Key Lab of Metal Matrix Composites, Shanghai Jiaotong University, Shanghai 200240, China

^c International Center for Materials Nanoarchitectonics (WPI-MANA) and Environmental Remediation Materials Unit, National Institute for Materials Science

(NIMS), 1-1, Namiki, Tsukuba, Ibaraki 305-0044, Japan

^a TU-NIMS Joint Research Center, School of Materials Science and Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China

ARTICLE INFO

Article history: Received 19 January 2016 Received in revised form 2 April 2016 Accepted 28 April 2016 Available online 29 April 2016

Keywords: Artificial photosynthesis Biomimetic Nanoarchitecture Solar fuels CO₂ photoreduction

ABSTRACT

In photosynthesis, an intricate polymeric system is constructed by connecting a light-harvesting antenna network, a molecular water oxidation center, and CO_2 or proton-reduction machinery in a nanolayered architecture as a basic photosynthetic unit for solar-to-fuels conversion. Herein, we present a prototype basic artificial photosynthetic unit by connecting a typical CO_2 /proton reduction catalyst, a cocatalyst and an electron mediator as well as CO_2 activator into a polymer based nano-architectured system for artificial photosynthesis with water and CO_2 . Here, $g-C_3N_4$ nanosheets, mimicking the nanolayered thylakoids stacks are demonstrated as promising photocatalytic elements with planar configuration and high surface area, which provide an excellent platform for the assembly of other analogous elements. Au NPs are served as a suitable cocatalyst. ZIF-9, as a typical cofactor to illustrate this concept here, is used as a CO_2 concentrator and an electron mediator to promote the redox reaction. In artificial photosynthesis, driven by light energy, water and CO_2 are served electron donor and carbon source respectively for the generation of H_2 and CO. The artificial unit described here as a simple model, provides an important biomimetic step down a path aligned with the low-cost artificial photosynthetic systems manufacturing.

1. Introduction

Artificial photosynthesis, the solar conversion process that is combining water splitting and CO₂ reduction without sacrificial electron donors is a great challenge for the generation of sustainable green energy [1–4]. Compared with water splitting, "CO₂ reduction" is more urgent but also more challenging [5–7] because of rather low efficiency, limited catalysts and sacrificial agents usually needed. Biomimetics, emulating or duplicating biosystems from the molecular to the nano- and macroscales, is a promising approach for novel artificial systems [8–10]. A natural leaf is a three-dimensional polymeric system [11] with abundant nonmetallic elements at the most fundamental (molecular) level (Fig. 1(a)). At the nanoscale level, photosynthesis occurs in the nanolayered thylakoids stacks (granum) where photosynthetic

* Corresponding authors.

E-mail addresses: hanzhou_81@sjtu.edu.cn (H. Zhou), jianliu@northwestern.edu (J. Liu), txfan@sjtu.edu.cn (T. Fan).

http://dx.doi.org/10.1016/j.nanoen.2016.04.049 2211-2855/© 2016 Elsevier Ltd. All rights reserved. pigments, functional proteins, electron carriers and cofactors are precisely arranged, serving as the most basic photosynthetic unit (Fig. 1(b),(c)) for the further integration into a 3D hierarchical biomachinery [12]. Therefore, to realize artificial photosynthesis applicable, we are motivated to design a model system by the construction of a basic artificial photosynthetic unit consisting of (a) inexpensive and widely available earth-abundant materials as a stable water splitting and CO_2 reduction system, combined with cofactors for light harvesting, charge-separation, CO_2 activation and so forth. (b) Linkage of typical artificial elements together into an architectural and functional analogous working assembly.

Molecular biomimetic is a fundamental approach for the design of biomimetic catalysts from molecular principles. The functions of some enzymes in photosynthesis rely on the N–C=N groups (e.g. histidine shown in Fig. 1(a), which is used for CO₂ fixation). Motivated thus, graphitic carbon nitride (g-C₃N₄), a metal-free polymeric semiconductor with abundant N–C=N bonds composed of N-bridged tri-s-triazine units [13] has emerged as a promising material. Such molecular structure endows g-C₃N₄ a super electronic structure with 2.7 eV bandgap as well as surface basicity

Fig. 1. Schematic illustration of natural and artificial photosynthetic systems. (a) A natural leaf with abundant nonmetallic elements at the most fundamental (molecular) level, left part: molecular structure of chlorophyll, the main photosynthetic pigment. Right part: molecular structure of histidine, an important enzyme for photosynthesis, with abundant N–C=N bonds. (b) A simplified scheme of the light-driven reactions of photosynthesis in a chloroplast. (c) basic photosynthetic unit: a single thylakoid embedded photosynthetic pigments, protein complexes to carry out the light reactions of photosynthesis. (d) molecular structure of polymeric g-C₃N₄. (e) artificial photosynthetic unit composed of CNS as the catalytic element, Au NPs as a cocatalyst and ZIF-9 as electron mediator and CO₂ activator. Indicating the process is using CO₂ and H₂O as the inputs and CO, H₂ as the outputs under light irradiation.

[14]. Thus g-C₃N₄ has wide applications in photocatalytic water splitting and photoelectrochemical energy conversion [15,16], oxygen-reduction reactions [17], NADH regeneration [18], CO₂ activation thermally [19] or catalytically with sacrificial agents [20], catalysis [21,22] and pollutants control [23]. Therefore, thanks to its earth-abundant elements and biomimetic molecular configuration, g-C₃N₄ has shown great promise for artificial photosynthesis. In particular, nanostructured g-C₃N₄ with biomimetic super structures is appealing. However, the design, selection and assembly of other artificial elements suitably onto g-C₃N₄ nanoarchitectures to construct an architectural and functional analogous device are the key questions.

Natural photosynthesis takes place in the nanolayered thylakoid membrane where photosystems are connected with an electron transfer chain. These processes ensure that the charge separation quantum efficiency is close to unity. While for the CO₂ fixation process, carbon dioxide concentrating mechanisms exist, sharing the common feature of concentrating CO₂ around the carbon-fixing enzyme, such that RuBisCO operating at a higher efficiency [24]. Inspired by photosynthesis, the constructions of some cofactors such as electron mediator, CO₂ concentrator/activator are particularly important. Metal-organic frameworks (MOFs) are microporous 3D materials with ultrahigh surface areas, adjustable cavities and controllable chemistry [25]. Zeolitic imidazolate frameworks (ZIFs), as a subclass of MOFs are constructed from transition-metal ions together with organic ligands. Both of the two building units function synergistically for the efficient transfer of the excited electrons for redox reaction. Furthermore, ZIFs show exceptionally high capacity for CO₂ uptake [26,27]. This

gives some opportunities for MOFs/ZIFs to play a significant role in artificial photosynthesis [25,28].

To this end, we present a prototype basic artificial photosynthetic unit by connecting a typical CO₂/proton reduction catalyst, a cocatalyst and an electron mediator as well as CO₂ activator into a polymer based nano-architectured system for artificial photosynthesis with water and CO₂. Here, g-C₃N₄ nanosheets, mimicking the nanolayered thylakoids stacks (Fig. 1(c) and Fig. 2 (a)) are demonstrated as a promising photocatalytic element with planar configuration and high surface area which provide an excellent platform for the assembly of other analogous elements. Au nanoparticles (NPs) are served as a suitable cocatalyst. ZIF-9, as a typical cofactor to illustrate this concept here, is used as a CO₂ concentrator and an electron mediator to promote the redox reaction. In artificial photosynthesis, driven by light energy, H₂O and CO₂ are served electron donor and carbon source respectively for the generation of H₂ and CO. This work demonstrates a conceptual strategy for the versatile design of highly efficient systems via integration of multiple functional components onto g-C₃N₄ nanoarchitectures.

2. Experimental

2.1. Synthesis of Au loaded C₃N₄ nanosheets

Firstly, C_3N_4 nanosheets were first synthesized *via* a thermal oxidation etching process according to a procedure described previously. Typically, dicyandiamide was calcined at 550 °C for 4 h

Download English Version:

https://daneshyari.com/en/article/1557173

Download Persian Version:

https://daneshyari.com/article/1557173

Daneshyari.com