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a b s t r a c t

Mass transfer in the liquid phase of gas–liquid multiphase flows usually takes place at a considerably

slower rate than the transfer of momentum, so mass flux boundary layers are much thinner than

momentum boundary layers. In Direct Numerical Simulations (DNS) the resolution requirement for

flows with mass transfer are therefore significantly higher than for flow without mass transfer. Here we

develop a multiscale approach to compute the mass transfer from buoyant bubbles, using a boundary-

layer approximation next to the bubble and a relatively coarse grid for the rest of the flow. This

approach greatly reduces the overall grid resolution required.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Bubble columns are used in the chemical industry for a large
number of processes that involve a gaseous and a liquid phase.
Those include, for example, hydrogenation and oxygenation in
many processes, as well as the synthesis of methanol (Deckwer,
1992; Furusaki et al., 2001). In bubble columns a gas is generally
injected at the bottom of the column into a liquid or slurry (liquid
and suspended particles) and as the bubbles rise, the gas diffuses
into the liquid and reacts with dissolved reactants. The yields of
these processes generally depend sensitively on the flow char-
acteristics, including the behavior of the gas bubbles, and bubble
column design, particularly the scale-up from laboratory results
to production plants, remains difficult. Large amount of chemicals
are processed in bubble columns and even a modest increase in
yields can result in significant savings. Numerical simulations,
where all continuum length and time scales are fully resolved, are
starting to have a profound impact on our understanding of
bubbly flows and the chemical reactions taking place in bubble
columns. Raffensberger et al. (2003) examined a stationary
bubble and a two-step reaction where a gas diffusing into the
liquid reacts with dissolved species, followed by a reaction
between the product of the first reaction and the dissolved

species to form an undesirable product, and showed that the
yield and selectivity are strongly dependent on the details of the
flow. For large deformable bubbles with a stationary wake, for
example, products from the first (desirable) process are trapped
in the wake and therefore have a strong tendency to react with
gas from the bubble (forming the undesirable by-product).
Including mass transfer and chemical reactions in numerical
simulation is challenging due to the large disparity between the
time-scales for diffusion of mass and diffusion of momentum in
liquids. Liquids generally have a high Schmidt number so mass
diffusion is much slower than momentum diffusion. Thus, mass
boundary layers are typically much thinner than the flow scales
and the resolution requirement for full simulations is generally
directed by the mass transfer, rather than the fluid mechanics.
Nevertheless, simulations using simplified two-dimensional flows
have shown that the sensitivity seen for stationary bubbles
carries over to flows with freely moving bubbles, although the
exact dependency on the governing parameters is even more
complex (Koynov et al., 2005).

A number of authors have recently computed the mass
transfer from moving bubbles and drops. Those include Wang
et al. (2008), Yang and Mao (2005), Ganguli and Kenig (2011a,b),
and Hayashi and Tomiyama (2011), who used a level set methods
to compute the bubble motion, and Davidson and Rudman (2002),
Bothe et al. (2003), Onea et al. (2009), Francois and Carlson
(2010), and Gupta et al. (2010), who used a volume of fluid
(VOF) method. Other authors, such as Mao et al. (2001) and
Figueroa and Legendre (2010) have used body fitted grids or
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unstructured meshes (Jung and Sato, 2005) to allow them to
concentrate grid points near the bubble. In most of these papers
the volume of the bubbles is assumed to remain constant, but
Hayashi and Tomiyama followed the shrinkage of the bubbles as
gas diffused to the liquid. Computations of mass transfer with
more complex physics, such as soluble surfactant (Zhang et al.,
2006; Muradoglu and Tryggvason, 2008; Booty and Siegel, 2010)
and reactions are also starting to appear. In addition to the papers
by Khinast and collaborators referenced above, simulations with
reactions have been described by Bauer and Eigenberger (2001),
Haroun et al. (2010), Wylock et al. (2011), and Dani et al. (2007).
In spite of the challenges, Radl et al. (2008) have conducted
simulations of the catalytic hydrogenation of nitroarenes under
reasonably realistic conditions. While the study included a
number of freely moving bubbles, the resolution requirements
limited the simulations to two-dimensional systems. To accu-
rately capture the mass transfer, a finer grid was used for the
mass transfer and the reactions than for the fluid flow. Darmana
et al. (2006) implemented the same approach in three-dimen-
sional calculations of mass transfer from bubbles with relatively
modest Schmidt number, Sc¼1.

Processes that take place on a scale much smaller than the
dominant scale (defined below) are common in multiphase flows.
For multiphase flows the ‘‘natural’’ or dominant small-scale is
usually set by the balance of surface tension, viscosity and inertia.
For bubble columns, for example, this scale determines the
average bubble size. In most cases, the dominant scale corre-
sponds to roughly where the appropriately chosen nondimen-
sional numbers, such as Weber, Capillary, Ohnsorge, and
Reynolds, are O(1) (and the key word here is obviously ‘‘appro-
priately’’). Bubble collisions, coalescence and breakup can, how-
ever, lead to thin films, threads, and tiny drops that are much
smaller than the average bubble size. Additional physical pro-
cesses, such as mass transfer and reactions can also result in
processes that take place on much smaller scales than the
dominant ones. For small-scale processes, surface tension and
viscosity generally dominate the dynamics, resulting in a rela-
tively simple geometry and flow. These are exactly the situations
where analytical or semi-analytical descriptions work well and
the obvious strategy is to use such descriptions for these pro-
cesses and couple them with the numerical description of the rest
of the flow. This is, of course, an old idea. Boundary layer theory
allows us to compute viscous drag for panel methods; the
Hadamarad–Rybczynski solution for small drops in Stokes flows
allows us to treat drops as point particles; and thin film models
have been used to account for small-scale motion before (see
Bossis and Brady, 1984; Davis et al., 1989; Ge and Fan, 2006, for
example). It seems likely that coupling analytical description for
small-scale process with numerical solutions may have a much
broader applicability, but before a general procedure can be
established, it is likely that additional examples are needed. In
Thomas et al. (2010) we developed such an approach for the thin
film between a drop sliding down an inclined wall.

Here we describe the development of a multiscale approach
intended to allow us to incorporate mass diffusion into a direct
numerical simulation (DNS) of bubbly flows. The approach is
based on the observation that the mass concentration changes
very rapidly near the gas–liquid interface, forming a thin mass-
boundary layer that controls the diffusion of chemical species
from the bubble to the liquid. Since the structure of this boundary
layer is relatively simple, its shape and thickness can be predicted
accurately with a boundary layer description. Thus, we use the
model to predict how much mass diffuses from the bubble into
the liquid and then solve an advection–diffusion equation for
most of the domain, to determine where the mass goes. For mass
transfer, Alke et al. (2010) and Bothe et al. (2011) have used the

exact solution of a one-dimensional diffusion problem, fitted to
the computational results close to the bubble, to find the mass
flux at the surface and Booty and Siegel (2010) have computed the
evolution of a soluble surfactant by incorporating a singular
perturbation analysis of the fluid next to the interface into a
numerical solution of the interface motion. The approach of Booty
and Siegel, although limited to Stokes flow, appears to be more
closely related to the method presented here than that of Alke
et al. In this paper we focus on the mass transfer only, leaving the
reactions for later. Although the approach developed here is
intended for use in DNS of many bubbles in turbulent flows, such
as those presented by Lu and Tryggvason (2006, 2007, 2008), here
we present results for two-dimensional flows only, focusing
mostly on the initial rise of a single bubble.

2. Numerical method and problem setup

For buoyant bubbles the governing nondimensional numbers
are the Eötvös number, the Archimedes number, and the ratios of
the densities and the viscosities. These numbers are defined in the
Nomenclature. For mass transfer we also need to include the
Schmidt number, which measures how fast mass diffusion takes
place compared to viscous diffusion of momentum. For liquids the
Schmidt number is generally very large so mass boundary layers
are thin compared to viscous boundary layers.

The simulations discussed in this paper are done using a front-
tracking/finite-volume method where the governing equations
are solved on a fixed, regular, mesh, covering both the ambient
liquid and the bubbles (Unverdi and Tryggvason, 1992). The
interface is marked by connected marker points that are advected
with the fluid velocity and a marker function, constructed from
the location of the interface, is used to set the density and
viscosity of the different fluids. The marker points are also used
to compute the surface tension. The method has been used earlier
for a large number of simulations of multiphase flows, and both
the method and various validation tests have been described in
detail in several publications. For applications to bubbly flows, see
Tryggvason et al. (2001), Bunner and Tryggvason (2002a,b, 2003),
and Esmaeeli and Tryggvason (2005), for example. For other
implementation of this method, see van Sint Annaland et al.
(2005) and Hua et al. (2008), for example. The computational
domain is fully periodic and we add a force equal to the weight of
the fluid to prevent uniform acceleration in the direction of
gravity. Here we present computations only for two-dimensional
domains. We believe that extending the approach to three-
dimensional flows is relatively straightforward.

The mass transfer is governed by an advection–diffusion
equation for the mass fraction f

@f

@t
þu � rf ¼Dr2f , ð1Þ

and we take the value of f on the bubble boundary, f0, to be given,
without loss of generality. We assume that the fluid inside the
bubble is well mixed and retains a uniform concentration
throughout the simulation. For our case, where the mass diffusion
in air is much higher than in water, this should be a reasonable
assumption. Thus, it is only the solution outside the bubble that is
of interest. As discussed by numerous authors (see Yang and Mao,
2005; Onea et al., 2009, for example) the solution to the original
equations for the mass concentration in the gas and the liquid is
discontinuous at the bubble surface, with the discontinuity given
by Henry’s law. However, by rescaling the concentration and the
diffusion coefficient in the liquid, the solution can be made
continuous. We also assume that the transfer of mass out of the
bubble is so small that any change in the bubble volume can be
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