

RAPID COMMUNICATION

Vanadium oxide as new charge recombination CrossMark blocking layer for high efficiency dye-sensitized solar cells

Hytham Elbohy, Amit Thapa, Prashant Poudel, Nirmal Adhikary, Swaminathan Venkatesan, Qiquan Qiao*

Department of Electrical Engineering, Center for Advanced Photovoltaics, South Dakota State, University, Brookings, SD 57007, USA

Received 11 July 2014; received in revised form 18 August 2014; accepted 6 September 2014 Available online 5 March 2015

KEYWORDS Dye-sensitized solar cells; Vanadium oxide; Charge recombination blocking layer

Abstract

Vanadium pentoxide (V_2O_5) was used as a novel blocking layer in dye-sensitized solar cells (DSCs), leading to a significant efficiency increase from 8.78% to 9.65%. The addition of V_2O_5 layer to nanocrystalline (nc)-TiO₂ increased peak external quantum efficiency (EQE) from \sim 80% to \sim 88-89%. Cyclic Voltammetry analysis indicated a positive shift of Fermi-level in case of $TiO₂/V₂O₅$ based cells supported by an increase of its capacitance comparing to bare TiO₂ based cells. Electrochemical impedance spectroscopy (EIS) results exhibited a \sim 5 times higher charge recombination resistance (R_{CT}) in V_2O_5 layer modified DSCs than conventional cells, which indicated that back charge transfer from $TiO₂$ to tri-iodide in the electrolyte was substantially suppressed. Transient photovoltage measurements on conventional and V_2O_5 layer modified cells were conducted and their decays were fitted to calculate the electron recombination lifetime (τ_n), which increased by a factor of \sim 3 in V₂O₅-based DSCs. This indicated that V₂O₅ significantly reduced the recombination rate at $TiO₂/electrolyte interface, further supporting$ that V_2O_5 functioned as a new effective surface passivation layer. $©$ 2014 Elsevier Ltd. All rights reserved.

Introduction

Dye-sensitized solar cells (DSCs) have been attracting great attention since it was invented in 1991 [\[1](#page--1-0)–[8\].](#page--1-0) Device

*Corresponding author.

efficiencies beyond 12% have been in reach $[9]$. In DSCs, the mesoporous $TiO₂$ is sensitized by a dye, which acts as light absorber [\[10](#page--1-0)–[14\]](#page--1-0). The light illuminating on the dye excites electrons from ground to excited states. The excited dye molecules inject electrons into $TiO₂$ which transport by diffusion before collected by the anode electrode and reach the counter-electrode through an external circuit. Redox

E-mail address: Qiquan.qiao@sdstate.edu (Q. Qiao).

electrolyte $1/I_3$ - is used to reduce the oxidized dye and meanwhile the oxidized redox reduced by taking electrons from the counter-electrode [\[15\]](#page--1-0).

Power conversion efficiency of DSC device is significantly dependent upon the electron back recombination at $TiO₂/$ eletcrolyte interface [\[16\]](#page--1-0). Such recombination reduces both the short-circuit current density (J_{sc}) and open-circuit voltage (V_{oc}) , resulting in a decrease in overall power conversion efficiency (n) . Several studies on the electron back recombination were reported recently, [\[17](#page--1-0)-[20\]](#page--1-0) and some techniques to suppress electron back recombination with the electrolyte have been suggested [\[16,21](#page--1-0)-[25\]](#page--1-0). Electron recombination with the electrolyte mainly occurs at two interfaces: FTO substrate/electrolyte and $TiO₂$ photoanode/electrolyte.

Two main approaches have been used to reduce the back charge transfer from FTO to electrolyte at the FTO/electrolyte interface $[22,26]$. One is to use a thin $TiO₂$ compact layer to minimize the exposed FTO surface that is not covered by the nanoporous $TiO₂$ film. The other approach is to use a blocking material such as poly (phenylene oxide) (PPO) to passivate the FTO substrate using electrodeposition technique $[22,26]$. At the TiO₂/electrolyte interface, since the dye molecules need to attach directly to the $TiO₂$, the blocking of mesoporous $TiO₂$ photoanode is basically a little more complicated. Two methods have also been used to decrease the back charge transfer recombination at the TiO2/electrolyte interface. The first is to coat the mesoporous TiO₂ film with a thin layer of a wide bandgap semiconductor with more negative conduction band than $TiO₂$, while the second is to use a material having an electronicinsulating coating such as $Nb₂$ and CaCO₃ to form an energy barrier at the $TiO₂/electrolyte interface. This surface$ barrier reduces the back charge transfer recombination rate and increases device performance [\[16,23,24](#page--1-0),[26,27\].](#page--1-0)

In this work, we report a solution-processed and costeffective vanadium (V) oxide (V_2O_5) as a novel charge recombination blocking layer for higher efficiency in DSCs. To the best of our knowledge, this is the first time for V_2O_5 to be used as charge recombination blocking layer. The new type of photoanode consists of mesoporous $TiO₂$ covered with a layer of V_2O_5 . The conduction band edge of V_2O_5 is significantly more negative than $TiO₂$ conduction band edge, which indicates that V_2O_5 should function as effective barrier layers for electron recombination at the $TiO₂$ photoanode/electrolyte interface. As a result, we have found that V_{OC} , J_{SC} and overall efficiency was been significantly improved after applying V_2O_5 to the TiO₂.

Experimental section

Device fabrication

Fluorine doped tin dioxide (FTO) substrates were cleaned using detergent, deionized (DIW) water, acetone, and 2 propanol in an ultrasonic bath for 15 min each. The FTO substrates were treated by submerging in the TiCl₄ aqueous solution (40 mM) for 30 min at 70 \degree C. Then, a thin compact layer of $TiO₂$ was spin coated onto the cleaned FTO substrates, followed by the deposition of a nanocrystalline $TiO₂$ (Ti-Nanoxide HT/SP, Solaronix) via doctor blading. The film was kept in air for \sim 10 min and then sintered at 475 °C for \sim 45 min. A TiO₂ light scattering layer was prepared by doctor blading a mixture of 80% Ti-Nanoxide R/SP (particle size $>$ 100 nm) with 20% Ti-Nanoxide HT/SP TiO₂ (particle size 8–10 nm) and sintered as above. And then a 40 mM aqueous solution of $TiCl₄$ was used to treat the photoanode again. Powder sample of $V₂O₅$ was purchased from Sigma Aldrich and used as received. V_2O_5 was dissolved in 5 ml acetonitrile to prepare a solution with a V_2O_5 : acetonitrile weight ratio of 1:50. This V_2O_5 solution was then stirred with a magnetic bar on a hot plate at 60 \degree C for 1 h. After that, it was drop casted onto $TiO₂$ main layer using micropipette and waited for 15 s before spin coated with a spin speed of 4000 rpm for 10 s and sintered at 475 \degree C. Then the film was cooled down to about 80 \degree C. The final photoanode was immersed in 0.25 mM N-719 dye solution in 1:1 volume ratio of acetonitrile/valeronitrile for 24 h to attach dye. N719 dye (Ruthenizer 535-bisTBA) was ordered from Solaronix. The dye-attached photoanodes were rinsed by acetonitrile to remove any dye aggregation then dried using nitrogen gas. Both anode electrode and counter electrode were then sealed together using a thermoplastic sealant.

0.03 M I2, 0.60 M BMII, 0.10 M GuSCN, and 0.5 M tertbutylpyridine were dissolved in a mixture of acetonitrile and valeronitrile with 85: 15 volume ratio to prepare the electrolyte used in device fabrication [\[28\]](#page--1-0). For comparison, conventional DSCs without use of V_2O_5 were also fabricated as reference devices. The devices were illuminated with a mirror attached on their back under a solar simulator with an AM 1.5 filter at a light intensity of 100 mW cm^{-2} . The device area was 0.13 cm². The incident photon to electron conversion efficiency (IPCE) was recorded by a Newport M-QE Kit system made of a monochromator and a set of lenses. IPCE data were taken with the pace of 1 point per 5 nm.

Electrochemical impedance spectroscopy measurement

Electrochemical impedance spectroscopy (EIS) measurements were carried out for both conventional and V_2O_5 treated DSCs in the dark on an Ametek Versastat 3200 potentiostat equipped with frequency analysis module (FDA). AC signal with 10 mV amplitude and $0.01 - 10⁵$ Hz frequency range was used. Forward bias close to open circuit voltage ≈ 0.8 V was applied with the photoanode negatively biased and counter electrode positively connected. The experimentally obtained impedance data were fitted by equivalent electrical model using EIS Spectrum Analyzer.

Cyclic voltammetry measurements

The CV measurements were performed using a solution of 10 mM lithium iodide (Lil) and 0.5 mM iodine (I_2) as solutes with 0.1 mM tetrabutylammonium hexafluorophosphate dissolved in acetonitrile as a supporting electrolyte. For comparison, the working electrode was $TiO₂$ film deposited on FTO glass before and after deposition of $V₂O₅$, while a platinum wire worked as a counter-electrode and Ag/AgCl as reference electrode.

Download English Version:

<https://daneshyari.com/en/article/1557604>

Download Persian Version:

<https://daneshyari.com/article/1557604>

[Daneshyari.com](https://daneshyari.com)