

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.elsevier.com/locate/nanoenergy

RAPID COMMUNICATION

High-performance lithium/sulfur cells with a bi-functionally immobilized sulfur cathode

Zhan Lin^{a,b,1}, Caiyun Nan^{a,b,c}, Yifan Ye^{d,e}, Jinghua Guo^{e,f}, Junfa Zhu^d, Elton J. Cairns^{a,b,*}

^aDepartment of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA ^bEnvironmental Energy Technologies Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

^cDepartment of Chemistry, Tsinghua University, Beijing 100084, China

^dNational Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China

^eAdvanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA ^fDepartment of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA

Received 9 June 2014; received in revised form 24 July 2014; accepted 6 August 2014 Available online 19 August 2014

KEYWORDS Lithium/sulfur cell; Lithium sulfide; Sulfur composite cathode; Core-shell nanoparticles; Lithium sulfide cell; Carbon coating

Abstract

Lithium/sulfur (Li/S) cells have a theoretical specific energy five times higher than that of lithium-ion (Li-ion) cells (2600 vs. \sim 500 Wh kg⁻¹). The conventional Li/S cells that use an organic liquid electrolyte are short-lived with low coulombic efficiency due to the polysulfide shuttle. We herein design carbon-coated NanoLi₂S (NanoLi₂S@carbon) composites, which consist of Li₂S nanoparticles as the core and a carbon coating as the shell. The carbon shell prevents the NanoLi₂S core from directly contacting the liquid electrolyte, which improves the performance of Li/S cells to provide longer cycle life and high sulfur utilization. The cyclability of Li/S cells is further enhanced by mixing the core-shell NanoLi₂S@carbon composites with graphene oxide, which chemically immobilizes polysulfides in the cathode through their functional groups. The resulting Li/S cell shows an initial specific discharge capacity of 1263 mAh g⁻¹ (normalized to sulfur) at the C/10 rate and a capacity retention of 65.4% after 200 cycles. The capacity decay mechanism during cycling is also characterized in detail using near edge X-ray absorption fine structure (NEXAFS) spectra.

*Corresponding author at: Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA. *E-mail address*: ejcairns@lbl.gov (E.J. Cairns).

¹Zhan Lin now is professor at Zhejiang University in Hangzhou, China.

http://dx.doi.org/10.1016/j.nanoen.2014.08.003 2211-2855/© 2014 Elsevier Ltd. All rights reserved.

Introduction

The depletion of fossil fuels and the effects of green house gases have aroused great interest in developing high energy density storage systems throughout the world [1-4]. The lithium/sulfur (Li/S) cell, consisting of lithium metal as the anode and elemental sulfur as the cathode, has been considered as the next-generation energy storage system for electric vehicles and large-scale grids. Based on the conversion reaction of

$$16Li + S_8 \rightarrow 8Li_2S \tag{1}$$

the Li/S cell can supply a theoretical specific energy of 2600 Wh kg⁻¹, which is five times greater than that of the lithium-ion (Li-ion) cell [5-7].

The conventional Li/S cell uses an organic liquid electrolyte. During discharge, elemental sulfur is reduced to form soluble polysulfides (e.g., Li_2S_x , $4 \le x \le 8$), which can dissolve into the organic liquid electrolyte. Since the elemental sulfur and its final discharge product Li₂S are neither electronically nor ionically conductive, the operation of Li/S cells depends on the dissolution of polysulfides in the liquid electrolyte [8-13]. However, the high solubility of polysulfides in the organic electrolyte represents a significant challenge in conventional Li/S cells, i.e., the polysulfide shuttle. The polysulfide shuttle migrates sulfur species from the cathode to the anode, resulting in the loss of active material, short cycle life of the sulfur-based electrode, and low coulombic and energy efficiencies [14,15]. In order to prevent the polysulfide shuttle and improve the cycling performance, the construction of a solid, essentially insoluble sulfur cathode is a necessity in the conventional liquid-electrolyte Li/S systems. Moreover, cycling the metallic lithium anode in the organic liquid electrolyte also remains a problem. During recharge, the metallic lithium forms dendrites, which can penetrate the separator and short the cell [16-19].

Currently much Li/S research focuses on using an elemental sulfur cathode because of its high specific capacity (1675 mAh g^{-1}) and light weight. The prevention of the polysulfide shuttle by a conductive polymer coating is a common method for protecting the sulfur particles. Lithium sulfide (Li₂S) has been studied as the prelithiated sulfur electrode in Li/S cells because of its high melting point (1372 °C) and favorably high specific capacity (1166 mAh g^{-1}) [20-22]. The Li₂S cathode supplies lithium and may avoid the direct use of a metallic lithium anode [23,24]. The possible combination of the Li₂S cathode with a Si or Sn anode can dramatically enhance the energy density of traditional rechargeable lithium cells [8,25]. However, bulk Li₂S has low electronic and ionic conductivity as low as 10⁻¹⁴ and 10^{-13} S cm⁻¹, respectively; and it has been considered to be an electrochemically inactive material.

To promote the electrochemical activity of Li₂S, herein we report a solid sulfur cathode prepared by an environmentally benign synthesis of nanostructured Li₂S (NanoLi₂S) via reacting elemental sulfur with lithium triethylborohydride (LiEt₃BH) in tetrahydrofuran (THF). The NanoLi₂S is coated with conductive carbon by heat-treatment of the Li₂S particles with a thin coating of polyacronitrile (PAN) polymer on the surface to form a core-shell structure (NanoLi₂S@carbon). This structure not only enhances the

conductivity, but also inhibits the dissolution of sulfur species for improved cycling performance. The cyclability of carbon-coated NanoLi₂S is further improved by mixing it with graphene oxide (GO-NanoLi₂S@carbon), which chemically constrains polysulfides within the cathode by the functional groups (such as hydroxyl, epoxide, carbonyl and carboxyl groups). The resulting Li/S cell shows an initial specific discharge capacity of 1263 mAh g⁻¹ (normalized to sulfur) at the rate of C/10 with a capacity retention of 65.4% after 200 cycles, which makes it a promising cathode material for Li/S cells.

Results and discussion

Figure 1a shows the synthesis schematic of core-shell carbon-coated NanoLi₂S as cathode materials for Li/S cells. First, NanoLi₂S was prepared by reacting elemental sulfur (S) with lithium triethylborohydride (LiEt₃BH) in tetrahydrofuran (THF), Eq. (2):

$S+2Li(CH_2CH_3)_3BH \rightarrow Li_2S\downarrow +2 (CH_2CH_3)_3B + H_2\uparrow$ (2)

During the reaction, aggregates of Li₂S nanoparticles precipitated from the THF solution; and the particles are not very uniform in size since particle aggregates are found (Figure 1b). However, we can synthesize uniform NanoLi₂S spheres by modifying the preparation procedure [26]. The collected NanoLi₂S was washed, centrifuged, and dried at 140 °C under vacuum for 2 h prior to use. Before carbon coating, the NanoLi₂S was heat-treated at 500 °C under Ar for 0.5 h, and a thin carbon layer of 2-3 nm was formed on the surface of the NanoLi₂S. Carbon-coated NanoLi₂S composites were prepared by the pyrolysis of a PAN coating (from DMF solution) on the NanoLi₂S. After heat treatment at 600 °C in Ar for 1 h, a much thicker carbon layer is found on the surface of NanoLi₂S, e.g., the thickness of the coating layer is 20-30 nm when the carbon content is 10 wt% (Figure 1c).

Figure 2a shows the X-ray diffraction (XRD) patterns of asprepared NanoLi₂S, NanoLi₂S after heat-treatment at 500 °C, and core-shell NanoLi₂S@carbon composites. The XRD patterns of the NanoLi₂S are identical to those of bulk Li₂S (JCPDS card no. 23-0369). These peaks are identified as a pure phase of Li₂S: 27.2° (111), 31.6° (200), 45.1° (220), 53.5° (311), and 56.0° (222), respectively. The XRD peaks of NanoLi₂S show significant peak broadening compared to those of the bulk Li₂S. The estimated crystallite size is 20-30 nm, which is much smaller than that of the bulk Li₂S particles (i.e., the particle size is $\sim\!1\,\mu\text{m}$). After heattreatment at 500 °C, the peak widths become much narrower, which is due to the crystal growth of NanoLi₂S. The average size of the NanoLi₂S aggregates is 500 nm in diameter after heat-treatment. However, when the Nano-Li₂S was further coated with carbon by the pyrolysis of the PAN polymer on its surface, the average size of the NanoLi₂S is preserved. The carbon coating procedure does not change the particle size of the NanoLi₂S with heat-treatment at 600 °C.

Raman spectra of NanoLi₂S, NanoLi₂S after heattreatment at 500 °C and core-shell NanoLi₂S@carbon are shown in Figure 2b. Significant peaks are found in the wavenumber range from 250 to 2000 cm^{-1} in the Raman Download English Version:

https://daneshyari.com/en/article/1557797

Download Persian Version:

https://daneshyari.com/article/1557797

Daneshyari.com