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Abstract
Nowadays, 2D nanosheets or nanoplatelets have attracted great attention due to their wide
applications. However, the synthesis of 2D a-Fe2O3 nanosheets with well-defined hexagonal
shape is extremely challenging, because the selective growth along one specific facet is very
hard to be realized. In our work, we studied the non-capping ligand mediated reaction within
graphene layer chamber, and successfully synthesized a-Fe2O3 hexagonal nanoplatelets
sandwiched between graphene layers (HP-Fe–G). These materials exhibit an improved electro-
chemical performance compared with the pre-existing a-Fe2O3 nanoparticles loaded graphene
(G-Fe2O3) composites because of the uniqueness of such architectures: thin nanoplatelets,
large enough sandwiched spaces to buffer the volume expansion and N-doped graphene. HP-Fe–
G delivered an ultrahigh reversible capacity of 1100 mAh/g after 50 cycles, thus higher than
their theoretical value (926 mAh/g); while G-Fe2O3 composites showed relatively low capacity
retention even after only 20 cycles (582 mAh/g). In addition, HP-Fe–G also reveal superior rate
capability, 887 mAh/g at 1C; in comparison, this value was only 135 mAh/g at 1C for G-Fe2O3.
& 2012 Elsevier Ltd. All rights reserved.

Introduction

As the most stable form of iron oxide, hematite (a-Fe2O3) is
an important substance because it has been used for
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photocatalysts, [1] field emitters, [2] electrode materials,
[3] and biotechnology. [4] Various hematite structures have
been fabricated, including nanocubes, spindles, nanowires,
nanotubes, and hollow spheres [1–8]. Recently, 2D
nanosheets or nanoplatelets have been paid an increased
attention due to their rich potentials [9–30]. For example,
Ma et al. have reported a series of new individual layer
nanosheets [12–15] via exfoliation of the cation-
exchangeable layered transition metal oxides or anion-
exchangeable layered hydroxides. In addition, our group
has recently prepared novel self-stacked Co3O4 nanosheets
with superior electrochemical performance via a simple
hydrothermal route [16]. However, the synthesis of 2D a-
Fe2O3 nanosheets with well-defined hexagonal shape is
extremely challenging; the most commonly grown struc-
tures of a-Fe2O3 are made of rhombohedral plates [17]a.
This is because the surface energies of various low index
faces are so close [17] that a selective growth along one
specific facet is very hard to be realized. Despite some
limited successes, for instance, using extreme reaction
conditions or preferential adsorption of certain ionic spe-
cies, [3b,17b–f] it is still a grand challenge to synthesize
hexagonal a-Fe2O3 nanoplatelets under mild conditions.

Recently, Alivisatos and coworkers [18] have studied the
mechanism of colloidal platinum nanocrystal growth in real
time utilizing entrapment of a liquid film between layers of
graphene. They found that under electron beam irradiation
Pt nanocrystals coalescenced and grew along the {1 1 1}
orientation in the presence of long chain surface ligands.
Very recently, our group have prepared N-doped graphene–
SnO2 sandwich paper by using a 7,7,8,8-tetracyanoquinodi-
methane anion (TCNQ�)-assisted method [22a] Herein we
utilized the above modified approach and studied the non-
capping ligand mediated reaction that had taken place
within graphene layers which serve as a reaction chamber,
and successfully fabricated a-Fe2O3 hexagonal nanoplate-
lets sandwiched between such layers (HP-Fe–G). The latter
mechanism is different from the former one. The novel
process is driven by the electrostatic absorption of positive
Fe3+ ions into the negative TCNQ� ions loaded graphene
sandwich layers, and is followed by the growth of a-Fe2O3

nuclei into hexagonal nanoplatelets along six equivalent /
1 1 0S directions in the confined graphene ‘‘reaction con-
tainer’’. Herein, TCNQ� ions not only make sure the
formation of a-Fe2O3 hexagonal nanoplatelets in the gra-
phene layers, but also guarantee production of N-doped
graphene, which has been testified to be helpful for the
improvement of electrochemical performance. In addition,
some great progress has been made recently on the
preparation of Fe2O3-graphene anode materials, but for
the most of them nanostructured Fe2O3 particles are usually
anchored onto the surface of the non-doped graphene and
their shapes are commonly spherical [19]. To the best of our
knowledge, there have been no reports on the synthesis of
a-Fe2O3 hexagonal nanoplatelets in the sandwiched N-doped
graphene layers. Compared with the pre-existing a-Fe2O3

nanoparticles loaded graphene (G-Fe2O3) composites and
previously prepared Fe2O3-graphene hybrids, our materials
exhibited obviously improved electrochemical performance.
For example, HP-Fe–G deliver an ultrahigh reversible capa-
city of 1100 mAh/g after 50 cycles, thus much higher than
their theoretical value (926 mAh/g); while G-Fe2O3

composites showed relatively low capacity retention even
after only 20 cycles (582 mAh/g). In addition, HP-Fe–G also
revealed enhanced rate capability, 887 mAh/g at 1C,
531 mAh/g at 5C; in comparison, this value was only
135 mAh/g at 1C for G-Fe2O3. These enhancement can be
attributed to the combinative merits of their unique
architectures: nanosized a-Fe2O3 hexagonal nanoplatelets,
sandwiched structures, and N-doped graphene. This indi-
cates that newly fabricated HP-Fe–G holds great potential
as an anode material for lithium storage.

Experimental

Synthesis of HP-Fe–G

Graphene oxide (GO) used in this work was prepared by a
modified Hummers method [22]. A homogeneous graphene
suspension was prepared in a 37 mL of H2O/N,N,dimethyl-
formamide (DMF) solvent mixture (volume ratio
DMF:H2O=9), followed by addition of hydrazine monohy-
drate, and mixture stirring at 80 1C for 12 h under an N2

flow. A freshly prepared green 7,7,8,8-tetracyanoquinodi-
methane anion (TCNQ�) acetonitrile solution was added to
the graphene suspension under stirring and N2 flowing. Then
a solution of FeCl3

�6H2O in water (5 mL) was purged with N2

for 30 min and then added to the prepared solution. The
mixture was stirred overnight under N2 for the ion
exchange. A NaOH aqueous solution (4 mL, 3 M) was added
dropwise in air. The mixture was kept stirring at 65 1C over
2 h. Then it was washed thoroughly with water and ethanol
and dried under vacuum at room temperature. These
samples were thermally treated at 500 1C for 1 h in a tube
furnace under Ar gas flow, then the furnace was cooled
naturally to room temperature.

Synthesis of G-Fe2O3 composites

A homogeneous graphene suspension was prepared in a
37 mL of H2O/N,N,dimethylformamide (DMF) solvent mix-
ture. And then hydrazine monohydrate was added under
stirring at 80 1C for 12 h in an N2 flow. Then a water solution
of FeCl3

�6H2O (5 mL) added to the above prepared solution.
The mixture was stirred overnight under N2 for the ion
exchange. A NaOH aqueous solution (4 mL, 3 M) was added
dropwise in air. Then it was washed thoroughly with water
and ethanol and dried under vacuum at room temperature.
These samples were thermally treated at 500 1C for 1 h in a
tube furnace under Ar gas flow, then the furnace was cooled
naturally to room temperature.

Characterizations

Transmission electron microscopy (TEM) images were taken
with a JEOL F3000 microscope operated at 300 kV. Samples
were first dispersed in ethanol and then collected using
carbon-film-covered copper grids for analysis. Scanning
electron microscopy (SEM) images were recorded on a
S4800 electron microscope operating at 15 kV. XRD pattern
was recorded on a Philips X Pert PRO MPD X-ray diffract-
ometer operated at 35 kV and 45 mA with Cu Ka radiation.
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