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Abstract 

During their operation, modern aircraft engine components are subjected to increasingly demanding operating conditions, 
especially the high pressure turbine (HPT) blades. Such conditions cause these parts to undergo different types of time-dependent 
degradation, one of which is creep. A model using the finite element method (FEM) was developed, in order to be able to predict 
the creep behaviour of HPT blades. Flight data records (FDR) for a specific aircraft, provided by a commercial aviation 
company, were used to obtain thermal and mechanical data for three different flight cycles. In order to create the 3D model 
needed for the FEM analysis, a HPT blade scrap was scanned, and its chemical composition and material properties were 
obtained. The data that was gathered was fed into the FEM model and different simulations were run, first with a simplified 3D 
rectangular block shape, in order to better establish the model, and then with the real 3D mesh obtained from the blade scrap. The 
overall expected behaviour in terms of displacement was observed, in particular at the trailing edge of the blade. Therefore such a 
model can be useful in the goal of predicting turbine blade life, given a set of FDR data. 
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Abstract 

In this study a response of a 2x2 twill weave T300 carbon fibre/epoxy composite flat plate specimen resultant air blast dynamic 
response observed in is examined, using a combination of non-invasive analysis techniques. The study investigates deformation 
and damage following air blasts with incident pressures of 0.4 MPa, 0.6 MPa and 0.8 MPa, and wave speeds between 650m/s and 
950m/s. Digital image correlation was employed to obtain displacement data from the rear surfaces of the specimens during each 
experiment. 3D x-ray tomography was used to visualize the resultant internal damage within the samples. It was shown that the 
global deformation and transitions in curvature of each specimen appear to be similar with varying out-of-plane displacements. 
Damage was observed to propagate from the rear surface of the specimens through to the front surface as the air blast magnitude 
increased. 
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1. Introduction 

A use of fibre-reinforced composites (FRCs) has increased across many areas of application including automotive, 
aerospace, naval, defence, energy and sport; dynamic loading regimes in all these areas are extremely likely 
(Silberschmidt, 2016). Therefore, understanding deformation, damage and fracture processes in FRCs under 
conditions of dynamic loading becomes important. Our study is limited to analysis of air-blast loading conditions, 
which may occur at close-proximity to explosions or sudden pressure increases.  

There was a significant amount of prior research focused at understanding behaviour of fibre-reinforced 
composites (Langdon et al., 2014) under air-blast loading conditions (LeBlanc et al., 2007; Tekalur et al., 2008). 
Typically, the analysis of the resultant damage is limited to visual inspection of external surfaces, or use of invasive 
techniques to study internal damage that could introduce additional damage making the investigation difficult and 
inconclusive. 

This paper describes the experimental case studies, in which carbon fibre/epoxy specimens were subjected to air-

 

Available online at www.sciencedirect.com 

ScienceDirect 

Structural Integrity Procedia 00 (2016) 000–000  
www.elsevier.com/locate/procedia 

 

2452-3216 © 2016 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the Scientific Committee of ECF21.  

21st European Conference on Fracture, ECF21, 20-24 June 2016, Catania, Italy 

Dynamic fracture in carbon-fibre composites: Air-blast loading 
Laurence A. Colesa, Craig Tiltonb, Anish Roya, Arun Shuklab, Vadim V. Silberschmidta 

aWolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Leicestershire, LE11 3TU, UK 
bDept. of Mechanical, Industrial and Systems Engineering, University of Rhode Island, Kingston, RI, 02881, USA  

Abstract 

In this study a response of a 2x2 twill weave T300 carbon fibre/epoxy composite flat plate specimen resultant air blast dynamic 
response observed in is examined, using a combination of non-invasive analysis techniques. The study investigates deformation 
and damage following air blasts with incident pressures of 0.4 MPa, 0.6 MPa and 0.8 MPa, and wave speeds between 650m/s and 
950m/s. Digital image correlation was employed to obtain displacement data from the rear surfaces of the specimens during each 
experiment. 3D x-ray tomography was used to visualize the resultant internal damage within the samples. It was shown that the 
global deformation and transitions in curvature of each specimen appear to be similar with varying out-of-plane displacements. 
Damage was observed to propagate from the rear surface of the specimens through to the front surface as the air blast magnitude 
increased. 
 
© 2016 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the Scientific Committee of ECF21. 

Keywords: carbon-fbre composites; air blast; damage; computed tomography 

1. Introduction 

A use of fibre-reinforced composites (FRCs) has increased across many areas of application including automotive, 
aerospace, naval, defence, energy and sport; dynamic loading regimes in all these areas are extremely likely 
(Silberschmidt, 2016). Therefore, understanding deformation, damage and fracture processes in FRCs under 
conditions of dynamic loading becomes important. Our study is limited to analysis of air-blast loading conditions, 
which may occur at close-proximity to explosions or sudden pressure increases.  

There was a significant amount of prior research focused at understanding behaviour of fibre-reinforced 
composites (Langdon et al., 2014) under air-blast loading conditions (LeBlanc et al., 2007; Tekalur et al., 2008). 
Typically, the analysis of the resultant damage is limited to visual inspection of external surfaces, or use of invasive 
techniques to study internal damage that could introduce additional damage making the investigation difficult and 
inconclusive. 

This paper describes the experimental case studies, in which carbon fibre/epoxy specimens were subjected to air-

http://crossmark.crossref.org/dialog/?doi=10.1016/j.prostr.2016.06.054&domain=pdf


418 Laurence A. Coles et al. / Procedia Structural Integrity 2 (2016) 417–4212 Author name / Structural Integrity Procedia  00 (2016) 000–000 

blast/shockwave loading in order to compare and contrast the resultant deformation and damage processes observed 
using noninvasive techniques such as digital image correlation and high-precision X-ray micro computed tomography 
(CT). 

2. Experimental Setup 

2.1. Materials and Specimens 

The carbon-fibre-reinforced epoxy specimens, measuring approximately 195 mm × 195 mm with a thickness of 
5.6 mm were fabricated from 10 plies of carbon-fibre fabric, pre-impregnated with a toughened epoxy matrix 
(IMP530R). The 10 plies were formed to a laminate consisting of 2 surface (external) plies (T300 3K) and 8 central 
bulking plies (T300 12K), with a 0°/90° layup configuration; the specimens have a theoretical density of 1600 kg/m3. 
All specimens were manufacture using the autoclave process, cured at 120°C with a 1.5°C/min ramp rate and a soak 
time of 160 minutes at a pressure of 90 psi under vacuum. 

2.2. Shock Tube Setup 

In the undertaken experimental programme, the composite specimens were positioned vertically on a three-point 
bend-style fixture that consisted of two (slightly rounded) knife edges located 152.4 mm apart (as shown in Figure 1). 
A rubber band was used to keep the specimen firmly against the knife edges, positioned vertically on the fixture. The 
shock-tube apparatus (8 m in length) consisted of a driver, a diaphragm and a driven section, which produced the air-
blast shockwave by pressurising the driver section up to a critical pressure, at which the diaphragm ruptures creating 
a dynamic pressure-wave profile. The muzzle of the shock tube, with an inner diameter of 76.2 mm, was moved 
towards the specimen until there was only a paper-thin (approximately 0.1-0.2 mm) gap between the specimen and 
the muzzle. Pressure sensors located towards the end of the muzzle recorded the shockwave profile that was acquired 
in the process of loading. 

 

 

Fig. 1. Air-blast regime and three-point-bending style fixture 

 
The deformation process of the composite plate was captured using three cameras (Photron SA1, Photron USA, 

Inc., CA, USA), with two cameras recording at 28,800 fps viewing the rear surface of the specimen for implementation 
of Digital Image Correlation (DIC) using the VIC-3D (Correlated Solutions) system. A third camera, also recording 
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at 28,800 fps, was placed perpendicular to the edge of the composite specimen to acquire side-view images and 
observe realization of the deformation process for each specimen. 

2.3. Profiles of Air-blast Pressure and Shock Waves 

The air blast incident pressure magnitudes were chosen to produce three levels of damage within the specimens, 
namely, minor, medium and major (with the specimens still intact); these magnitudes were determined during 
preliminary calibration experiments. For this experimental study incident pressures of 0.4 MPa, 0.6 MPa and 0.8 MPa 
with respective reflected pressures of 1.35, 2.50 and 3.4 MPa. These parameters correspond to wave speeds of between 
650 m/s and 950 m/s. 

 

2.4. Configuration of X-Ray Tomography Scans 

All the dynamically loaded specimens were inspected using a Metris 160 H-XT X-ray CT system to investigate 
the extent of the internal damage and its spatial distribution. Each computed-tomography scan was conducted at 140 
kV and 130 µA using a tungsten target, with 2650 radiography projections taken over the 360° rotation for each 
specimen at an exposure of 500 ms. In order to reduce granular noise, 8 images where taken and averaged per 
projection. The total volume scanned for each composite specimen was 180 mm × 140 mm × 20 mm at a resolution 
of 97 µm. 

3. Experimental results and discussion 

Following the experiment case studies, a typical response of damage caused by the major air blast condition can 
be seen in Figure 2, with the specimen undergoing global flexural bending between the fixture supports. This resulted 
in typical tensile damage with fracture initiating at the centre of the rear surface, followed by propagation of tensile 
fracture through the plies leading to inter-ply delamination. 

 

 

Fig. 2. Typical major damage case: dynamic response to the air blast at 0.13 ms 

3.1. Deformation Analysis 

Plots of the centre-point displacement for each specimen show an initial oscillation leading to maximum 
displacement, followed by a subsequent gradual decay of oscillations due to dissipation and resultant backpressure. 
For each used air-blast pressure magnitude, the onset of delamination was found to initiate after a different number of 
oscillations. The amplitude and frequency of the oscillations were seen to change after delamination due to the 
reduction in local stiffness of damaged composite specimens.  

The experimentally obtained cross-sectional plots of vertical and horizontal out-of-plane displacements clearly 
demonstrated that the deformation and transitions in curvature of each specimen, resulting from the different air blast 
magnitudes, were similar: there were no obvious differences apart from the excepted increasing out-of-plane 
displacement. No signs of localization can be naturally explained by the widely distributed loading area, resulting in 
an almost instant transitioning of each specimen to global flexural bending. Still, observations of the out-of-plane 
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