
Modelling precipitation kinetics: Evaluation of the thermodynamics of
nucleation and growth

Bastian Rheingans a,n, Eric J. Mittemeijer a,b

a Institute for Materials Science, University of Stuttgart, Heisenbergstrasse 3, 70569 Stuttgart, Germany
b Max Planck Institute for Intelligent Systems (formerly Max Planck Institute for Metals Research), Heisenbergstrasse 3, 70569 Stuttgart, Germany

a r t i c l e i n f o

Article history:
Received 29 January 2015
Received in revised form
9 April 2015
Accepted 30 April 2015
Available online 4 May 2015

Keywords:
Gibbs–Thomson effect
Thermodynamics
CALPHAD
Precipitation kinetics
Modelling

a b s t r a c t

Modelling of (solid-state) precipitation kinetics in terms of particle nucleation and particle growth re-
quires evaluation of the thermodynamic relations pertaining to these mechanisms, i.e. evaluation of the
nucleation barrier and of the Gibbs–Thomson effect. In the present work, frequently occurring problems
and misconceptions of the thermodynamic evaluation are identified and a practical approach with regard
to kinetic modelling is proposed for combined and unified analysis of the thermodynamics of nucleation
and growth, based on the fundamental thermodynamic equilibrium consideration in a particle–matrix
system. A computationally efficient method for numerical determination of the thermodynamic relations
is presented which allows an easy and flexible implementation into kinetic modelling.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The dispersion of small second-phase particles within a parent-
phase matrix, e.g. as resulting from a solid-state precipitation re-
action, strongly influences the properties of the two-phase system.
In materials science, precipitation reactions are therefore widely
used as a method to enhance materials performance in numerous
fields of application [1]. Precise control of the reaction kinetics
allows to tailor the microstructure evolving upon precipitation and
thus to tune the material properties.

Upon precipitation, particles of a solute(s)-rich β phase are
formed within an α-phase matrix initially supersaturated in solute
(s), leaving behind a solute(s)-depleted α-phase matrix. The
kinetics of the precipitation reaction, typically described in terms
of nucleation and growth of precipitate particles, strongly vary
with the degree of solute supersaturation, i.e., at constant tem-
perature, with phase composition. In order to account for this ef-
fect in a model for precipitation kinetics the kinetics must be
coupled to the thermodynamics of the alloy system. The numerical
efficiency of the kinetic model and the quality of its results are
therefore directly linked to the evaluation of the system's ther-
modynamics. Typical examples are models of Kampmann–Wagn-
er-numerical (KWN) type [2] (see e.g. [3–6] and Section 4): in this
frequently applied type of modelling approach, the evolution of

the particle size distribution is computed on the basis of numerical
integration of a composition-dependent nucleation rate and a
size- and composition-dependent growth rate for discrete time
steps and discrete particle-size classes. Such models thus require
numerous evaluations of thermodynamic relations. Unfortunately,
up to now the current corresponding modelling practice often
involves usage of incompatible thermodynamic models for nu-
cleation and growth and redundant thermodynamic evaluations
(see below). The present work proposes a practical route for the
thermodynamically correct and numerically efficient coupling of
kinetic model and thermodynamic description (for KWN-type
modelling).

In terms of thermodynamics, formation and stability of a pre-
cipitate-phase particle are (in the simplest case) defined by two
counteracting factors (see e.g. [7]): (i) The release of energy due to
the decomposition of the supersaturated matrix phase into solute-
depleted matrix phase and solute-rich precipitate phase. This re-
lease of energy can be described as a difference of chemical Gibbs
energies G xj j

c ( ) of the (homogeneous) phases j ,= α β, defined by
their respective compositions xj. (ii) The increase in energy due to
the development of a particle–matrix interface.1

In the rate equations for nucleation and growth as typically
used in KWN-type kinetic models, this stability consideration is
represented by two different concepts: the energy barrier for
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nucleation and the Gibbs–Thomson effect, affecting the growth
(rate) of a particle. In the classical theory of nucleation [8,9], the

rate of nucleation Ṅ is dominated by an energy barrier GΔ * for
formation of a particle of critical size rn above which the particle is
stable:
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where k and T denote the Boltzmann constant and the absolute
temperature, respectively.2 For the case of a precipitation reaction,

GΔ * and rn are functions of the change in chemical Gibbs energy
g x x,c

,m ,pΔ ( )α β upon nucleation (with g x x,c
,m ,p−Δ ( )α β being the

chemical driving force for nucleation) for given compositions
x ,mα and x ,pβ of the α-phase matrix and the β-phase precipitate,
respectively, and of the interface energy γ per unit area, i.e.

G G g x x, ,c
,m ,p γΔ * = Δ *(Δ ( ) )α β and r r g x x, ,c

,m ,p γ* = *(Δ ( ) )α β , thus re-
flecting the two competing energy contributions. Growth of a
solute-rich particle leads to solute depletion of the surrounding
matrix; particle growth can then (in any case eventually) become
rate-controlled by solute diffusion through the solute-depleted
matrix towards the particle. The growth rate of a spherical particle
of radius r in a binary3 system A–B is then often described by
[12,13]
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with the diffusion coefficient D of the solute component in the
matrix and the atom fractions4 of solute x ,mα in the α-phase matrix
remote from the particle, and x ,intα and x ,intβ in the α-phase matrix
and in the β-phase particle at the particle–matrix interface,
respectively; the factor k′ accounts for the difference in molar
volume of the α phase and the β phase. For x x,m ,int>α α , i.e. for a
positive growth rate (considering precipitation of a solute-rich β
phase, k x x,int ,int′ −β α is generally positive), the particle is stable and
grows; for x x,m ,int<α α , the particle is unstable and shrinks. x ,intα

and x ,intβ are often taken according to local establishment of
thermodynamic equilibrium at the interface.5 For a small particle
size, i.e. for a large ratio of interface area to particle volume, the
state of equilibrium between the α-phase matrix and the β-phase
precipitate can strongly deviate from the state of equilibrium
between the α- and β-bulk phases, i.e. the α phase and the β
phase in the absence of the interface. This is the so-called Gibbs–
Thomson effect, which, in compliance with the two counteracting
contributions of composition-dependent chemical Gibbs energy
and interface energy, can be expressed by functions x ,intα and x ,intβ

depending on particle size (i.e. interface area) and interface energy
γ per unit area, i.e. x x r,,int ,int ( )γ=α α and x x r,,int ,int ( )γ=β β .

Kinetic modelling of nucleation and growth thus requires
evaluation of the thermodynamics of the system defined by che-
mical energy and interface energy. Usually, the interface energy γ
per area is taken as being constant within a certain range of
composition, particle size and morphology. This assumption ef-
fectively allows to reduce the evaluation of the thermodynamics
for the kinetic modelling to determination of (i) the nucleation
barrier as a function of the composition-dependent chemical
driving force for nucleation g x x,c

,m ,p−Δ ( )α β and (ii) the composi-

tions x r,int ( )α and x r,int ( )β as a function of particle size r (cf. Section

2). Analytical expressions for g x x,c
,m ,pΔ ( )α β , x r,int ( )α and x r,int ( )β ,

based on simple thermodynamic solution models for the chemical
Gibbs energies of the α and the β phase, are an often used, nu-
merically efficient way to implement thermodynamic data into the
numerical kinetic modelling. For instance, the Gibbs–Thomson
effect in a binary system is often accounted for by application of
the equation [14]
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for the composition of the matrix at the particle–matrix interface,
where x r( → ∞)α is the solute concentration of the α phase in the
reference state of equilibrium between the α phase and the β
phase with r → ∞, i.e. between the bulk phases in the absence of
the interface. Vmol

β is the mean molar volume of the β-phase and R
denotes the gas constant. Eq. (3) is based on the assumption that
the thermodynamic behaviour of the α-matrix phase can be
described with the regular solution model and that the β-pre-
cipitate phase is a pure phase, i.e. x r x r 1,int ( )( ) = → ∞ =β β . The

applicability of such analytical expressions can thus be severely
limited by the limited capability of the underlying simple solution
models to adequately describe the actual thermodynamic beha-
viour of the α phase and the β phase.

Hence, in recent years, direct numerical derivation of the re-
lations g x x,c

,m ,pΔ ( )α β , x r,int ( )α and x r,int ( )β from a comprehensive
thermodynamic assessment of the alloy system (which is typically
based on more complex solid solution models for the chemical
Gibbs energies) has become more frequently applied, especially for
multi-component systems (see, e.g., [5,6]). This trend is facilitated
by the increasing availability of such thermodynamic assessments,
e.g. in form of CALPHAD data, and commercial software for ther-
modynamic analysis (e.g. [15]). On the one hand, the numerical
determination of the chemical driving force for nucleation,

g x x,c
,m ,p−Δ ( )α β , for a given composition x ,mα of the matrix phase,

can be performed straightforwardly, for instance by application of
the parallel tangent/maximum chemical driving force approach
[16] (see Section 2). On the other hand, the numerical evaluation
of the Gibbs–Thomson effect, i.e. the determination of the com-
positions x r,int ( )α and x r,int ( )β , is much more elaborate [17–19],
since it requires the evaluation of a thermodynamic equilibrium
state including the energy contribution of the interface, e.g. by
minimisation of the total Gibbs energy [15]. In view of the corre-
spondingly larger complexity and computational effort, direct
numerical evaluation of the Gibbs–Thomson effect is in practice
often avoided and simple analytical expressions such as Eq. (3),
based on generally invalid solid solution models, are adopted in-
stead. Obviously, problems of inconsistency arise when the rela-
tions g x x,c

,m ,pΔ ( )α β for nucleation and x r,int ( )α and x r,int ( )β for
growth are derived, analytically or numerically, by adoption of
differing, incompatible thermodynamic solution models for nu-
cleation and for growth. This is a common shortcoming in kinetic
models of precipitation kinetics based on the KWN-approach (e.g.
[2,3]).6 The problem becomes even more aggravated when an
elastic strain energy contribution due to a precipitate/matrix misfit
is taken into consideration only for nucleation but not for growth
(or vice versa) without more ado (e.g. [22,23]). As a consequence,
the kinetic model predictions may be strongly biased or

2 For a full expression of Ṅ according to classical nucleation theory, see e.g.
[10].

3 For multinary systems, see e.g. [11].
4 For binary systems, the convention x xj j

B= will be used.
5 cf. footnote at the end of Section 2.3.

6 Naturally, this problem does not appear in kinetic models without dis-
crimination of nucleation kinetics and growth kinetics, as in cluster dynamics
models, cf. e.g. [20]. Also, in kinetic models involving a consideration of the total
(Gibbs) energy of the system [21], such problems are more readily avoided.
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