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a b s t r a c t

For illustrative and explanatory purposes, liquidus and solidus are frequently drawn as straight lines in
textbooks. Thermodynamic consequences of sketching rectilineal phase boundaries are analyzed. It is
shown that although thermodynamics does not prohibit such boundaries, they result in peculiar
temperature dependencies of components' lattice stabilities. An idiosyncrasy of these functions and
restrictions imposed by them are worth keeping in mind if it is intended to pencil a T–x section on which
all phase boundaries are straight lines.

& 2014 Elsevier Ltd. All rights reserved.

1. Problem formulation

In virtually any textbook on phase transformations or physical
metallurgy, there is a section on solidification, in which a famous
Gulliver–Scheil equation [1,2] is derived. To simplify its derivation,
authors assume that an equilibrium distribution coefficient is
constant. This assumption does not necessitate the linearity of
liquidus and solidus, but if they are straight lines, then, of course,
the distribution coefficient is constant. As Fig. 1 typifies, the
authors employ this argument and consciously draw the phase
boundaries as straight lines. Since the discussion in the textbooks
is focused on Scheil's model and its usage for describing a
redistribution of components during solidifications, the supposi-
tion of rectilinearity of the phase boundaries is tacitly accepted
without paying any attention to it. It is worth mentioning that the
authors never assign particular values to the slopes of liquidus and
solidus. Also, nothing quantitative is said about components'
melting points and enthalpies of fusion; the thermodynamic
properties of liquid and solid solutions remain unspecified as well.
In fact, the T�x sections exemplified by Fig. 1 are cartoons
sketched for a utilitarian pedagogic purpose.

Although the straight-line liquidus and solidus look so “nat-
ural” that it is tempting to accept them without challenging, it is
interesting to find whether rectilinear phase boundaries are
thermodynamically feasible. If “rectilinearity” is interpreted
strictly mathematically, then the investigation cannot be based
on an analysis of experimentally established phase diagrams
containing discrete data points burdened with random and,

sometimes, non-random errors. Consequently, such a study should
be anchored to solution thermodynamics.

The examination may lead to two outcomes: either rectilineal
phase boundaries are thermodynamically prohibitive or not. In the
latter case, the study must reveal how the properties of pure
components, on the one hand, and liquid and solid solutions, on
the other hand, are interlinked.

Predictably, the present investigation hinges on expressions for
calculating the slopes. Fortunately, there is no need to derive
corresponding formulae from scratch; that was already done in
[3–7]. However, for the sake of cohesiveness, the next two sections
begin with a brief review of the “calculus of slopes”.

2. No solid-state solubility

Although this work is focused on the case illustrated by Fig. 1,
let us begin by considering a simpler situation when the compo-
nent 2 does not dissolve in the solid component 1. This case can be
interpreted as if one drew a sketch shown in Fig. 2 and then asked:
Is it possible that the slope of liquidus remains constant within a
finite temperature region below the melting point? It is worth
accentuating that nothing in addition to the drawing is known. In
particular, there is no information on the melting point and the
enthalpy of fusion of the component 1; the thermodynamic
properties of the liquid phase and even a model suitable for
describing it are undefined.

The condition of equilibrium between the liquid phase and the
pure solid component 1 is

Fðx; TÞ � Gðx; TÞ�xGxðx; TÞ�GS
1ðTÞ ¼ 0 ð1Þ
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Recalling that (1) must hold along the liquidus and using implicit
differentiation, one obtains FxþFT ðdT=dxÞ ¼ 0, from which the
slope can be found:

dT=dx¼ �Fx=FT ð2Þ
If, for the sake of simplicity of derivations, the solid component
1 and the liquid component 2 at the current temperature are used
as reference states, then

GS
1 � 0 ð3Þ

G¼ ð1�xÞΔGS-L
1 þRT ½ð1�xÞlnð1�xÞþx ln x�þGex ð4Þ

By employing (1), (3) and (4) in (2), the following expression
(which, of course, does not depend on a choice of the reference
states) for the slope can be derived:

dT
dx

¼ ðRT=ð1�xÞÞþxGex
xx

�ΔSS-L
1 þR lnð1�xÞ�SexþxSexx

If x-0, then dT=dx-�RT1=ΔSS-L
1 ðT1Þo0. Table 1 contains actual

slopes calculated not for a generic “component 1”, but for real
chemical elements; as this table evidences, they vary widely.

If the slope does not change, then the following must hold:

ðRT=ð1�xÞÞþxGex
xx ðx; TÞ

�ΔSS-L
1 ðTÞþR lnð1�xÞ�Sexðx; TÞþxSexx ðx; TÞ

¼ � RT1

ΔSS-L
1 ðT1Þ

� β

ð5Þ
In order to make Eq. (5) linking the properties of the component 1 and
the liquid phase usable, the lattice stability of the first component and
the excess Gibbs energy of liquid have to be defined. However, as
mentioned above, the only information available is the sketch shown
in Fig. 2 per se. In other words, neither ΔGS-L

1 ðTÞ nor Gexðx; TÞ is
known. Of course, the assumption of liquidus' linearity mathematically
expressed by (5) will never allow one to restore these two functions in

a unique manner or even decide what kind of mathematical expres-
sions should be used for describing ΔGS-L

1 ðTÞ and Gexðx; TÞ. One
cannot escape an ambiguity without making further simplifications. In
view of a complete absence of usable information, let us treat the
liquid phase as an ideal solution and then investigate what the
assumption of rectilinearity does to the lattice stability of the first
component.

Without the excess terms, (5) becomes

RT=ð1�xÞ
�ΔSS-L

1 þR lnð1�xÞ
¼ β ð6Þ

A requirement that the liquidus is rectilineal translates in

ΔSS-L
1 ¼ R ln

β�TþT1

β
� T
β�TþT1

� �
ð7Þ

The fact that x¼ ðT�T1Þ=β is utilized for deriving (7) from (6).

Notations

a slope of liquidus
b slope of solidus

f aa|{z}
m times

… bb|{z}
n times

� ∂mþ nf
∂am∂bn

G molar Gibbs energy of liquid phase
GS
1 molar Gibbs energy of solid component 1

Gex excess molar Gibbs energy of liquid phase
GL molar Gibbs energy of liquid phase
GS molar Gibbs energy of solid phase

p slope of liquidus
q slope of solidus
R gas constant
Sex excess molar entropy of the liquid phase
T temperature
Ti melting point of component i
x mole fraction of second component in liquid phase
y mole fraction of second component in liquid phase
z mole fraction of second component in solid phase
β slope of liquidus
ΔPI-II

i change of the molar property P when component
i transforms from state I to state II

Fig. 1. Illustrations from [9, p. 209], [10, p. 246] and [11, p. 167].
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Fig. 2. Straight-line liquidus sketched for the case when component 2 does not
dissolve in solid component 1.
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