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a b s t r a c t

Using solid/solid diffusion couples and the electron probe microanalysis (EPMA) technique, the
interdiffusion coefficients in fcc Cu–Al–Fe alloys at 1273 K were determined by means of Whittle and
Green’s method. Based on the atomic mobilities of three sub-binary systems available in the literature
and the interdiffusivities determined, the atomicmobilities in fcc Cu–Al–Fe alloyswere assessed bymeans
of the DICTRA (DIffusion Controlled TRAnsformation) software package. The calculated interdiffusivities
agree well with the experimental ones. Further verification of the atomic mobilities obtained was carried
out through comprehensive comparisons between the model-predicted concentration profiles/diffusion
paths of several diffusion couples and the experimental data. The results indicate that the atomic
mobilities obtained can reproduce the experiment data reasonably well.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Cu–Al–Fe ternary alloys attractworld-wide interest due to their
potential industrial applications, such as thermal barrier coat-
ings [1], low-friction wear-resistant coatings, composite bioma-
terials and catalysts, as well as reinforcement phases/fillers for
composite materials [2]. In addition, many investigations have
been devoted to the Cu–Al–Fe system [3] owing to the formation
of quasicrystalline phases. Apart from the thermodynamic infor-
mation, the kinetic information, such as atomic mobility and ac-
tivation energy, is also of significance to get an insight into phase
transformation including selection of phases in solidification and
formation of metastable and quasicrystalline phases during var-
ious metallurgical processes. So far, the atomic mobilities in fcc
Cu–Al, Cu–Fe, and Al–Fe alloys have been studied by Liu et al. [4],
Wang et al. [5] and Zhang et al. [6], respectively. However, to the
best of our knowledge, there exists no information with respect to
interdiffusivity or atomic mobilities in fcc Cu–Al–Fe alloys in the
literature.

Consequently, the main objectives of the present work are:
(i) to determine the interdiffusion coefficients in fcc Cu–Al–Fe
alloys at 1273 K; (ii) to evaluate the atomic mobilities of fcc
Cu–Al–Fe alloys by means of DICTRA based on the available
atomic mobilities for the three subsystems in the literature and
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our experimental results; and (iii) to verify the atomic mobilities
obtained via the simulation of concentration profiles and diffusion
paths from several diffusion couples.

2. Experiments

Copper (purity: 99.99 wt%), aluminum (purity: 99.99 wt%), and
iron (purity: 99.99 wt%) were used as starting materials. Button
samples of Cu–Al, Cu–Fe, and Cu–Al–Fe alloys were prepared
by arc melting of the pure elements under a high-purity argon
atmosphere using a non-consumable tungsten electrode. The
corresponding nominal compositions of the alloys are listed in
Table 1. The buttons were remelted five times to improve their
homogeneity. After that, the buttons were cut into blocks of
approximate dimensions 4 mm × 4 mm × 6 mm. The alloy blocks
were then sealed in quartz tubes under vacuum atmosphere,
and homogenized at 1273 K for 864 ks (10 days) in an L4514-
type diffusion furnace (Qingdao Instrument & Equipment Co.
Ltd., China), followed by water quenching. After being ground,
polished, and cleaned, the blocks were bound together by
molybdenum wires to make six diffusion couples according to
the assembly listed in Table 1. These six diffusion couples were
then sealed in quartz tubes under vacuum atmosphere, and
annealed at 1273 K for 28.8 ks (8 h) in the L4514-type diffusion
furnace. Subsequently, the diffusion couples were quenched
into cold water. The quenched diffusion couples were cut
parallel to the diffusion direction. After standard metallographic
preparation, the concentration profiles were measured by the
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Table 1
Diffusion couples and experimental conditions in the present work.

Couple designation Nominal composition of the diffusion couples (at.%) Diffusion temperature (K) Time (ks)

A1/B1 Cu–8.2Al/Cu–1.0Al–2.0Fe 1273 28.8
A2/B2 Cu–12.5Al/Cu–1.0Al–1.2Fe 1273 28.8
A3/B3 Cu–1.0Al/Cu–5.5Al–1.2Fe 1273 28.8
A4/B4 Cu–0.5Al/Cu–8.9Al–1.4Fe 1273 28.8
A4/B5 Cu–0.5Al/Cu–13.5Al–2.0Fe 1273 28.8
A4/B6 Cu–0.5Al/Cu–14.0Al–3.0Fe 1273 28.8

electron probe microanalysis (EPMA) technique (JXA-8230, JEPL,
Japan) on polished sections, parallel to the diffusion direction. The
concentrations were obtained by comparison with standards of
pure elements Cu, Al, and Fe, after absorption and fluorescence
corrections (ZAF corrections).

3. Calculation of interdiffusivity in fcc Cu–Al–Fe alloys

Kirkaldy successfully extended the Boltzmann–Matanomethod
into ternary and even higher-order systems [7]. According to
Kirkaldy, it is possible to design two diffusion couples, the diffusion
paths of which intersect at one common composition. The main
and cross interdiffusivities of this common composition can be
determined. Kirkaldy [7] presented Fick’s second law in a 1–2–3
ternary system as
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where i is the solute, C1 and C2 are the concentrations of solutes
1 and 2 respectively, t is the diffusion time, and X is the distance
from the Matano interface. Solvent 3 is treated as the dependent
variable. D̃3

11 and D̃3
22 are twomain interdiffusion coefficients,while
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21 two cross ones. In this work, solutes 1 and 2 are Al and
Fe, with solvent 3 being Cu. The initial and boundary conditions
for the semi-infinite diffusion couples are
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With the aid of Boltzmann–Matano method [8,9], Eq. (1) can be
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Assuming that the volume change is negligible, the position
of the Matano plane should be the same for concentration
profiles of solutes 1 and 2 in theory. In actual calculations,
however, the difference between the locations of Matano plane
for solutes 1 and 2 will exist for experimental measurements
of concentration profiles and subsequent calculations. In order
to avoid such differences, Whittle and Green [10] introduced
normalized concentration variables Yi(i = 1 or 2) in the ternary
system:

Yi = (Ci − C−

i )/(C+

i − C−

i ), (4)
and the ternary interdiffusion coefficients can then be determined
by solving the following equations:
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With four functions in Eqs. (5) and (6) from two diffusion
couples, the four main and cross interdiffusivities in Eq. (1) for the
intersection point can then be determined.

4. Modeling of atomic mobility

According to Andersson et al. [11], the atomic mobility of
species B,MB, can be expressed as

MB = M0
B exp
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1
RT

mgΩ, (7)

where M0
B is the frequency factor, QB is the activation enthalpy, R

is the gas constant, T is the temperature in kelvin, and mgΩ is a
factor taking account the effect of ferromagnetic contribution to
diffusivity. For the fcc phase, the ferromagnetic contribution can
be neglected [12]. In this case, the atomic mobility parameter ∆GB
is defined by−QB+RT ln
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, which is dependent on composition

and temperature. Thus,∆GB for disordered solid solution fcc phase
in the Cu–Al–Fe system can be represented by the Redlich–Kister
polynomial [13]:
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where xi is the mole fraction of species i, ∆Gi
B is the value of ∆GB

for B in pure i, and r∆Gi,j
B and s∆Gi,j,k

B are the binary and ternary
interaction parameters respectively. In addition, the parameter υs

ijk
can be expressed as
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/3. (9)

The tracer diffusion coefficient D∗

B is correlated with its atomic
mobility by the Einstein relation [14]:

D∗

B = RTMB. (10)

The interdiffusion coefficient D̃n
kj is correlated to the atomic

mobilities [11]:
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where δik is the Kronecker delta (δik = 1 if i = k; otherwise,
δik = 0), and xi,µi, andMi are themole fraction, chemical potential,
and mobility of element i, respectively.

In the number-fixed frame of reference, for a substitutional
solution, the diffusional flux of the species, J⃗Nk , in amulticomponent
system is given by the Fick–Onsager law [14]:

J̃Nk = −

n−1−
j=1

D̃n
kj∇Cj, (12)

where ∇Cj is the concentration gradient of element j, and the
superscript N stands for the number-fixed frame of reference.
When J̃Nk = 0, the location of a zero-flux plane (ZFP) for solute
k is determined within the diffusion zone [15]:∫ CK (ZFP)
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