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Undulate phase boundaries on binary T –x diagrams
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Abstract

Usually, an inflection point on a phase boundary is considered as an unambiguous indication that one of phases participating in the equilibrium
is internally unstable, i.e. that it is prone to separation. Subsequently, it is habitually deemed that the inflection point may appear only if a
thermodynamic model of this phase contains an excess term.

It is shown that in contrast to this belief, inflection points on a phase boundary may appear when a pure solid component or a stoichiometric
binary phase is in equilibrium with the ideal binary solution, which is internally stable, indeed.
c© 2007 Elsevier Ltd. All rights reserved.

Keywords: Binary system; Phase boundary; Inflection point; Entropy of melting

1. Introduction

The Sn–Zn system was optimized by Fries and Lukas [1].
The phase diagram resulting from that assessment is shown
in Fig. 1 (solid lines). Let us notice an inflection point on the
liquidus. A traditional way of explaining such a shape (known
as “S-shape”) is to assume that the liquid phase is prone to
separation at temperatures below the liquidus. A dashed line
representing a metastable miscibility gap in the liquid suggests
that in this particular case, the rationalization is compelling.

In this work, it is shown that such an explanation
is not universal. This is done by firstly deriving general
expressions for the slope and curvature of a phase boundary
for the case when a binary solution is in equilibrium with
a stoichiometric binary phase. Then these expressions are
simplified by assuming that the solution is ideal. Finally,
through a straightforward mathematical analysis, a condition
resulting in the appearance of an inflection point is formulated.

2. Slope of a phase boundary

Let us consider the equilibrium between a binary solution
phase L and a binary stoichiometric phase α. For the sake of

∗ Corresponding author.
E-mail address: malakhov@mcmaster.ca (D.V. Malakhov).

determinacy, let us assume that L is a simple (single lattice)
substitutional solution. The Gibbs energies of L and α are given
by (1) and (2), respectively:

GL
= (1 − x L)∆G0L

1 + x L∆G0L
2

+ RT ((1 − x L) ln(1 − x L)+ x L ln x L)+ ∆exGL (1)

Gα
= (1 − xα)∆G0α

1 + xα∆G0α
2 + ∆ f Gα (2)

where ∆G0γ
i is the Gibbs energy of transformation of the i-

th component from the structure associated with its reference
state to the structure of the γ phase. The general expression
(2) reduces to Gα

= ∆G0α
1 if xα = 0 and to Gα

= ∆G0α
2 if

xα = 1.
The condition of equilibrium between L and α can be written

as

GL
+ (xα − x L)GL

L − Gα
= 0. (3)

In (3) and below, the notation ϕL L . . . L︸ ︷︷ ︸
m times

T T . . . T︸ ︷︷ ︸
n times

≡
∂m+nϕ

∂(x L )m∂T n is

used for making expressions shorter and easier to handle.
A great deal of attention has been paid in the literature

to calculating slopes of phase boundaries [2,3]. Despite this,
it seems justified to start derivations from scratch to ensure
cohesiveness of the present work as well as to enforce internal
logic.
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Fig. 1. A metastable miscibility gap in the liquid phase (dashed curve)
superimposed on the equilibrium Sn–Zn phase diagram.

Let us denote the LHS of (3) as F . Since F remains
equal to zero along the phase boundary, one can use implicit
differentiation and write

FL + FT (dT/dx L) = 0. (4)

The expression for the slope of the phase boundary immediately
follows from (4):

dT/dx L
= −FL/FT (5)

where

FL = (xα − x L)GL
L L (6)

FT = GL
T + (xα − x L)GL

LT − Gα
T . (7)

Having expressions (1) and (2), one can write partial derivatives
of the Gibbs energies in (6) and (7) as

GL
L L = RT/((1 − x L)x L)+ ∆exGL

L L (8)

GL
T = −(1 − x L)∆S0L

1 − x L∆S0L
2

+ R((1 − x L) ln(1 − x L)+ x L ln x L)− ∆exSL (9)

GL
LT = ∆S0L

1 − ∆S0L
2 + R ln(x L/(1 − x L))− ∆exSL

L (10)

Gα
T = −(1 − xα)∆S0α

1 − xα∆S0α
2 − ∆ f Sα. (11)

Substitution of (8) in (6) gives

FL = (xα − x L)(RT/((1 − x L)x L)+ ∆exGL
L L). (12)

Substitution of (9)–(11) in (7) yields

FT = R((1 − xα) ln(1 − x L)+ xα ln x L)

− (1 − xα)∆S0α→L
1 − xα∆S0α→L

2

−∆exSL
− (xα − x L)∆exSL

L + ∆ f Sα. (13)

By inserting (12) and (13) in (5), the slope can be computed.
It is worth mentioning that since there are no fundamental

restrictions preventing FT in (13) from being equal to
zero, infinite slopes are not prohibited by thermodynamics.
Slopes tending to +∞ or −∞ are inevitable if T → 0,
because all entropies of formations and transformations become
infinitesimally small. It may happen than both the numerator
and denominator in (5) are equal to zero. An analysis of this
exotic and interesting situation is beyond the scope of the
present contribution.

In a particular case when xα = 0 and x L
→ xα , it can

easily be shown (finiteness of ∆exGL
L L should be recalled) that

dT/dx L
= −RT1/∆S0α→L

1 (T1) < 0, where T1 is the melting
point of the first component when it is in the α structure. If
xα = 1 and x L

→ xα , then dT/dx L
= RT2/∆S0α→L

2 (T2) >

0. These two expressions for limiting slopes are well known, in
fact [3].

If x L
→ xα and if 0 < xα < 1, then FL tends to

zero. Since FT becomes equal to the entropy of melting of α
taken with the opposite sign, i.e. since it is always negative, an
indeterminacy 0/0 is never encountered in (5). Consequently, it
can be concluded that (dT/dx L)x L=xα = 0.

3. Curvature of a phase boundary

In contrast to slopes, the calculation of curvatures of phase
boundaries did not acquire much attention in the literature.
An excellent work [4] is the only publication known to the
authors in which this problem was deeply and extensively
discussed. Despite the unquestionable relevance of that paper,
the derivations below have a different mathematical and
conceptual flavor, which is not surprising since the objective
of this contribution differs quite significantly from that of [4].

Let us start with a terminological clarification. The curvature

of the function ψ(z), which is d2ψ/dz2

[1+(dψ/dz)2]3/2 , cannot be
identified with its second derivative. In this work, however,
for the sake of brevity, d2T/d(x L)2 is named the curvature.
A justification of such a terminological frivolity is that the
curvature and the second derivative either have the same sign
or are both equal to zero.

Let us denote the LHS of (4) as Φ and recall that like F
it remains equal to zero along the phase boundary. By using
implicit differentiation again, one obtains

ΦL + ΦT (dT/dx L) = 0 (14)

where

ΦL =
∂

∂x L (FL + FT (dT/dx L))

= FL L + FLT (dT/dx L)+ FT (d2T/d(x L)2) (15)

ΦT =
∂

∂T
(FL + FT (dT/dx L))

= FLT + FT T (dT/dx L). (16)

By inserting (15) and (16) in (14), the following expression for
the second derivative can be arrived at:

d2T

d(x L)2
= −

FL L + 2FLT (dT/dx L)+ FT T (dT/dx L)2

FT
. (17)
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