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ABSTRACT

Computer vision and machine learning methods were applied to the challenge of automatic microstruc-
ture recognition. Here, a case study on dendritic morphologies was performed. Two classification tasks
were completed, and involved distinguishing between micrographs that depict dendritic morphologies
from those that do not contain this particular microstructural feature (Task 1), and from those
micrographs identified as depicting dendrites, different cross-sectional views (longitudinal or transverse)
were identified (Task 2). Data sets were comprised of images taken over a range of magnifications, from
materials with different compositions and varying orientations of microstructural features. Feature
extraction and dimensionality reduction were performed prior to training machine learning algorithms
to classify microstructural image data. Visual bag of words, texture and shape statistics, and pre-
trained convolutional neural networks (deep learning algorithms) were used for feature extraction.
Classification was then performed using support vector machine, voting, nearest neighbors, and random
forest models. For each model, classification was completed using full (original size) and reduced feature
vectors for each feature extraction method tested. Performance comparisons were done to evaluate all
possible combinations of feature extraction, selection, and classifiers for the task of micrograph
classification. Results demonstrate that pre-trained neural networks represent microstructure image data
well, and when used for feature extraction yield the highest classification accuracies for the majority of
classifier and feature selection methods tested. Thus, deep learning algorithms can successfully be
applied to micrograph recognition tasks. Maximum classification accuracies of 91.85 4 4.25% and
97.37 +£3.33% for Tasks 1 and 2 respectively, were achieved. This work is a broad investigation of
computer vision and machine learning methods that acts as a step towards applying these established
methods to more sophisticated materials recognition or characterization tasks. The approach presented
here could offer improvements over established stereological measurements by removing the
requirement of expert knowledge (bias) for interpretation of image data prior to characterization.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

significant bias and potentially error into the process of
microstructure recognition, interpretation, and characterization.

Materials characterization is a critical aspect of the material
design and discovery process. Recently, there has been much
research in the field of materials informatics, a growing research
area in which information technology and data science methods
are used to interpret and analyze material data in order to
accelerate the material discovery, design, and development process
[1-5]. Currently, material design relies on chance discoveries and
follows a classical synthesis-characterization-theory-computation
approach [6]. Further, there is a heavy reliance on individual
researcher background and experience which introduces
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For example, quantification of microstructures traditionally is done
using stereological measurements. Bias is introduced into
stereological measurements through the requirement that an
expert must first recognize and identify key microstructural
features (inclusions, grains, or phases). This bias can be caused
by a variety of factors, such as an individual’s background,
education, and experiences [6].

Although there have been recent advances in the field of
quantitative microstructural science, there is still a heavy
dependence on expert knowledge to identify what microstructural
features are of interest for quantification [7]. Therefore it is desir-
able to expand upon work previously presented by DeCost and
Holm in Ref. [7], and further explore methods of quantitative
microstructure representations which do not require a priori
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knowledge of microstructural features of interest or significance
[6]. This work aims to leverage existing computer vision and
machine learning techniques specifically for the challenge of
microstructure recognition. While the overlap between computer
vision, machine learning, and materials science is currently small
[6], this work is a step towards increasing cross-disciplinary stud-
ies that challenge the current paradigm for microstructure
characterization.

Dendritic morphologies were chosen for this small case-study
since dendrites are a well-characterized microstructural feature
that exists in a variety of material systems (from single to multi-
component). Size, shape, and spacing of dendrites vary depending
on solidification behavior and chemistry, thus micrographs of this
single feature can vary widely. The sample preparation and imag-
ing methods used also contribute to the variety of micrographs
produced from dendritic microstructures. Despite this variability
in image data, it is still possible for human experts to look at a
micrograph that contains dendrites and identify that it contains
this microstructural feature, even though different orientations of
dendrites (transverse or longitudinal) look distinctly different.

Computer vision and machine learning methods were applied
to the task of identifying a particular microstructural feature of
interest (dendrites) from micrographs that do not contain this par-
ticular feature (just as a human expert would identify that a micro-
graph contains dendrites). This recognition task is referred to in
this work as Task 1. Task 1 is a high-level microstructure recogni-
tion task in the sense that dendrites are a type of microstructural
feature that are not specific to a material system. A second classi-
fication task (referred to here as Task 2) was also completed, and
involved distinguishing between longitudinal and transverse
cross-sectional views of dendritic microstructures. This task may
be viewed as a logical next step following the identification of den-
drites in Task 1. If the micrograph from Task 1 was identified as a
dendrite, then a second binary classification task was performed,
with the goal of distinguishing between two different cross-
sectional views.

The contribution in this work is to investigate multiple com-
puter vision and machine learning methods for microstructure
recognition. We hypothesize that the approach and methods pre-
sented here can be generalized, and thus applied to a variety of
microstructure recognition tasks that act as a necessary first step
in characterization of a material system.

2. Alloy fabrication and sample preparation

The alloy fabrication, processing, and metallographic sample
preparation procedure followed to obtain images used in this work
was based on the process detailed in Refs. [8,9] and is summarized
here.

A Materials Research Furnaces (MRF) three probe arc melter
was used to fabricate alloys of varying Sn-Ag-Cu compositions.
After melting alloys were allowed to solidify and were then pre-
pared for directional solidification (DS). The solidified buttons were
placed in a beaker on a hot plate. The button was re-melted while
constantly being purged with Ar gas to minimize sample oxidation.
The alloy melt was then transferred into a 4 mm inner diameter
quartz ampule with a mechanical pump. The rods were allowed
to cool, then removed from the ampule, and placed in a larger
quartz ampule (5 mm inner diameter) for DS. This ampule was
then back-filled with Ar gas, sealed using a hydrogen torch, and
inserted into the DS furnace.

DS was performed using a Bridgman-type apparatus in order to
refine alloy microstructure. The tube furnace in this apparatus is a
Thermolyne Type-21100 fitted with an Omega temperature con-
troller. Following DS, alloys were removed from the quartz ampule,

and small sections from the middle third of the rod were mounted
in epoxy for metallographic sample preparation. Sections were
mounted such that transverse and longitudinal orientations of
B-Sn dendrites could be viewed. Samples were ground using silicon
carbide (SiC) papers to 600 grit, then polished using 9, 3,and 1 pum
diamond slurries. Colloidal silica was used as the final polishing
step and as a chemical etchant so that the dendritic microstructure
would be readily visible using light optical microscopy.

3. Image data sets

Image data used in this study includes micrographs taken over a
span of approximately three years by students in the Lewis
Research Group in the Materials Science and Engineering Depart-
ment at Rensselaer Polytechnic Institute (RPI). All images taken
by Lewis Research Group members are of solder alloys with den-
dritic microstructures. These alloys were manufactured, processed,
and imaged at RPI, and a representative process of sample prepara-
tion was presented in Section 2. In order to supplement micro-
graphs obtained at RPI, micrographs from the publicly available
Dissemination of Information Technology for the Promotion of
Materials Science (DoITPoMS) library [10] were used. Example
images used in classification are provided in Fig. 1.

Images were grouped into two data sets: Data Set 1 and Data
Set 2, corresponding to classification Tasks 1 and 2 respectively.
Data Set 1 is comprised of micrographs with and without dendritic
morphologies. This data set includes all images with dendrites
(longitudinal and transverse cross-sections) from both the Lewis
Group and the DoITPoMS micrograph library [10]. All micrographs
that do not depict dendritic morphologies were obtained from the
DoITPoMS library. Data Set 1 includes 528 images that are each
227 by 227 square pixels. 264 original images were used in making
Data Set 1 (132 micrographs containing dendrites and 132 micro-
graphs without dendrites). Each original image is 270 by 500 pixels
but includes a scale bar that interferes with feature extraction,
therefore each image was cropped to yield two 227 by 227 square
pixel images. Thus, 528 images were used for classification.

Data Set 2 is a subset of Data Set 1, and is comprised of micro-
graphs that only contain dendrites, where each micrograph is
either a transverse or longitudinal cross-sectional view. Micro-
graphs used in this data set include both images from the Lewis
Group and the DoITPoMS micrograph library. Data Set 2 contains
a total of 188 images that are each 227 by 227 square pixels. As
was done for Data Set 1, original images were cropped to remove
the scale bar: 47 micrographs of each longitudinal and transverse
sections (total of 94 original images) were cropped to create a
188 images used for classification.

4. Approach

The general approach applied to the task of micrograph
classification involved feature extraction and feature selection
(dimensionality reduction) to compute feature vectors that were
then used for training, validating, and testing various classification
models. The same approach was applied to both Data Sets 1 and 2
and is shown schematically in Fig. 2.

Feature extraction is the first step in the process of classifying
micrographs. Feature extraction starts with feature detection,
where features in an image are local regions of pixels that include
an ‘interesting’ part of a microstructure, such as a corner, edge, or
blob-like object. Features detected using computer vision algo-
rithms are not necessarily semantically meaningful, however are
pixel patterns that are mathematically repeatable and recogniz-
able, thereby making the region a good feature. Detected features
are then described (or represented) in the form of a vector, called
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