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a b s t r a c t

A phase field model with the consideration of applied and thermal stress is developed in this paper. The
elastic stress and strain fields inside the solid skeleton can be calculated out by phase field model
together with the phase morphologies. By adding an external constant stress boundary condition, the
total strain can be obtained by solving the mechanical equilibrium equations. We can get the equivalent
elastic modulus under different phase morphologies from these calculations, which is useful for FEM or
FDM simulations on a larger scale. This model is applied to as-cast and semi-solid casting process, respec-
tively. The equivalent elastic modulus under dendritic and spherical solid skeleton are both obtained.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

Casting simulation is now widely accepted as an important tool
for product design and process optimization. Casting simulation
uses numerical methods to calculate mold filling, cooling and
liquid-solid phase transformation. It finally provides some quanti-
tative predictions of defects distribution, thermal stresses and dis-
tortions. At the beginning of the casting simulation, the CAD
(Computer Aided Design) geometry should be meshed first for
the following FEM (Finite Element Method) or FDM (Finite Differ-
ence Method) calculations. The cell size changes from hundreds
microns to several millimeters, which depends on the complexity
of the objective castings. The cells can be divided into three cate-
gories during simulation according to the solid fractions inside
each mesh, i.e. the liquid cell ðf s ¼ 0Þ, the solid cell ðf s ¼ 1Þ and
the mush cell ð0 < f s < 1Þ. The volume average method is usually
adopted in order to get the equivalent properties for mush cells,
such as density, thermal conductivity, elastic modulus, etc.

Among these properties, the equivalent elastic modulus is very
important for residual stress and distortion predictions. But it is
not a pure thermodynamics parameter and hard to be measured
by experiments at the mush state. So many scientists established
a lot of equations to predict the equivalent elastic modulus based
on different volume average methods. But most of the equations

are only functions of solid fraction or temperature. They did not
consider the complexity of solid skeleton network, which can be
affected by the processing methods.

Recently, the phase-field model is becoming a powerful tool to
describe the complex interface pattern evolutions [1–5]. It
describes the microstructure using a set of conserved and non-
conserved field variables that are continuous across the interface
regions. Phase-field models of solidification have been originally
developed for pure materials [6,7] and then extended to alloys
[8–13]. The elastic stress and strain fields in the solid skeleton net-
work can also be calculated out directly within the phase field
framework, especially the internal stresses caused by the thermal
shrinkage. In this work we develop the phase field model by adding
an external small stress as mechanical boundary conditions. Using
this model we can calculate the stress and strain distributions. The
total strain can be calculated out, which is a mechanical response
to the external small applied stress. From these calculations we
can obtain the equivalent elastic modulus, which is useful for
FEM or FDM simulations on a larger scale [14,15].

2. Model descriptions

For multi-grain system, the multi-phase phase field model
should be adopted in order to describe the different phases or ori-
entations during solidification process. In this model, different ori-
entations of the same solid phase will be distinguished by separate
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phase-field parameters. The governing equations for phase field
evolution can be given as [16–19]:
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where Mab is the mobility of the interface, rab is the interface

energy, DGCH
ab and DGEL

ab are chemical driving force and mechanical

driving force, respectively. DGCH
ab can be written as:

DGCH
ab ¼ �f aðcaÞ þ f bðcbÞ þ lðca � cbÞ ð2Þ

where l is the solute chemical potentials and can be given as [20]:
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The mechanical driving force DGEL
ab can be obtained using the

following equations:
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where e0a
� �ij is the transformation strain and Cijkl

a is the elasticity
tensor.

In order to get the finial strain in Eq. (5) at the mechanical equi-
librium state, the following equations should be solved:
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By adding an external constant stress boundary condition, the
mechanical response can be obtained by solving the mechanical

equilibrium equations. The grids at the top boundary are set to
keep the same displacement, which can be seen in Fig. 1. The
equivalent elastic modulus can be described as:

Eeq ¼ qL=DL ð7Þ

Fig. 1. The calculation sketch for equivalent elastic modulus.

Table 1
The parameters used in the simulation.

Parameters Liquid Solid

Diffusion coefficient 2 � 10�8 m2 s�1 1 � 10�12 m2 s�1

C11 20 MPa 7198 MPa
C12 10 MPa 3876 MPa
C44 5 MPa 1660 MPa
Initial concentration 1.5 at% 0.21 at%
Interface energy 0.1 J m�2

Mobility of the interface 4 � 10�10 m4 J�1 s�1

Mesh size 2 � 10�6 m Fig. 2. The dendrite morphology at different solid fractions. (a) f s ¼ 0:12, (b)
f s ¼ 0:32, (c) f s ¼ 0:75.
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